...

Source file src/google.golang.org/genproto/googleapis/cloud/automl/v1/alias.go

Documentation: google.golang.org/genproto/googleapis/cloud/automl/v1

     1  // Copyright 2022 Google LLC
     2  //
     3  // Licensed under the Apache License, Version 2.0 (the "License");
     4  // you may not use this file except in compliance with the License.
     5  // You may obtain a copy of the License at
     6  //
     7  //     http://www.apache.org/licenses/LICENSE-2.0
     8  //
     9  // Unless required by applicable law or agreed to in writing, software
    10  // distributed under the License is distributed on an "AS IS" BASIS,
    11  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    12  // See the License for the specific language governing permissions and
    13  // limitations under the License.
    14  
    15  // Code generated by aliasgen. DO NOT EDIT.
    16  
    17  // Package automl aliases all exported identifiers in package
    18  // "cloud.google.com/go/automl/apiv1/automlpb".
    19  //
    20  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb.
    21  // Please read https://github.com/googleapis/google-cloud-go/blob/main/migration.md
    22  // for more details.
    23  package automl
    24  
    25  import (
    26  	src "cloud.google.com/go/automl/apiv1/automlpb"
    27  	grpc "google.golang.org/grpc"
    28  )
    29  
    30  // Deprecated: Please use consts in: cloud.google.com/go/automl/apiv1/automlpb
    31  const (
    32  	ClassificationType_CLASSIFICATION_TYPE_UNSPECIFIED     = src.ClassificationType_CLASSIFICATION_TYPE_UNSPECIFIED
    33  	ClassificationType_MULTICLASS                          = src.ClassificationType_MULTICLASS
    34  	ClassificationType_MULTILABEL                          = src.ClassificationType_MULTILABEL
    35  	DocumentDimensions_CENTIMETER                          = src.DocumentDimensions_CENTIMETER
    36  	DocumentDimensions_DOCUMENT_DIMENSION_UNIT_UNSPECIFIED = src.DocumentDimensions_DOCUMENT_DIMENSION_UNIT_UNSPECIFIED
    37  	DocumentDimensions_INCH                                = src.DocumentDimensions_INCH
    38  	DocumentDimensions_POINT                               = src.DocumentDimensions_POINT
    39  	Document_Layout_FORM_FIELD                             = src.Document_Layout_FORM_FIELD
    40  	Document_Layout_FORM_FIELD_CONTENTS                    = src.Document_Layout_FORM_FIELD_CONTENTS
    41  	Document_Layout_FORM_FIELD_NAME                        = src.Document_Layout_FORM_FIELD_NAME
    42  	Document_Layout_PARAGRAPH                              = src.Document_Layout_PARAGRAPH
    43  	Document_Layout_TABLE                                  = src.Document_Layout_TABLE
    44  	Document_Layout_TABLE_CELL                             = src.Document_Layout_TABLE_CELL
    45  	Document_Layout_TABLE_HEADER                           = src.Document_Layout_TABLE_HEADER
    46  	Document_Layout_TABLE_ROW                              = src.Document_Layout_TABLE_ROW
    47  	Document_Layout_TEXT_SEGMENT_TYPE_UNSPECIFIED          = src.Document_Layout_TEXT_SEGMENT_TYPE_UNSPECIFIED
    48  	Document_Layout_TOKEN                                  = src.Document_Layout_TOKEN
    49  	Model_DEPLOYED                                         = src.Model_DEPLOYED
    50  	Model_DEPLOYMENT_STATE_UNSPECIFIED                     = src.Model_DEPLOYMENT_STATE_UNSPECIFIED
    51  	Model_UNDEPLOYED                                       = src.Model_UNDEPLOYED
    52  )
    53  
    54  // Deprecated: Please use vars in: cloud.google.com/go/automl/apiv1/automlpb
    55  var (
    56  	ClassificationType_name                              = src.ClassificationType_name
    57  	ClassificationType_value                             = src.ClassificationType_value
    58  	DocumentDimensions_DocumentDimensionUnit_name        = src.DocumentDimensions_DocumentDimensionUnit_name
    59  	DocumentDimensions_DocumentDimensionUnit_value       = src.DocumentDimensions_DocumentDimensionUnit_value
    60  	Document_Layout_TextSegmentType_name                 = src.Document_Layout_TextSegmentType_name
    61  	Document_Layout_TextSegmentType_value                = src.Document_Layout_TextSegmentType_value
    62  	File_google_cloud_automl_v1_annotation_payload_proto = src.File_google_cloud_automl_v1_annotation_payload_proto
    63  	File_google_cloud_automl_v1_annotation_spec_proto    = src.File_google_cloud_automl_v1_annotation_spec_proto
    64  	File_google_cloud_automl_v1_classification_proto     = src.File_google_cloud_automl_v1_classification_proto
    65  	File_google_cloud_automl_v1_data_items_proto         = src.File_google_cloud_automl_v1_data_items_proto
    66  	File_google_cloud_automl_v1_dataset_proto            = src.File_google_cloud_automl_v1_dataset_proto
    67  	File_google_cloud_automl_v1_detection_proto          = src.File_google_cloud_automl_v1_detection_proto
    68  	File_google_cloud_automl_v1_geometry_proto           = src.File_google_cloud_automl_v1_geometry_proto
    69  	File_google_cloud_automl_v1_image_proto              = src.File_google_cloud_automl_v1_image_proto
    70  	File_google_cloud_automl_v1_io_proto                 = src.File_google_cloud_automl_v1_io_proto
    71  	File_google_cloud_automl_v1_model_evaluation_proto   = src.File_google_cloud_automl_v1_model_evaluation_proto
    72  	File_google_cloud_automl_v1_model_proto              = src.File_google_cloud_automl_v1_model_proto
    73  	File_google_cloud_automl_v1_operations_proto         = src.File_google_cloud_automl_v1_operations_proto
    74  	File_google_cloud_automl_v1_prediction_service_proto = src.File_google_cloud_automl_v1_prediction_service_proto
    75  	File_google_cloud_automl_v1_service_proto            = src.File_google_cloud_automl_v1_service_proto
    76  	File_google_cloud_automl_v1_text_extraction_proto    = src.File_google_cloud_automl_v1_text_extraction_proto
    77  	File_google_cloud_automl_v1_text_proto               = src.File_google_cloud_automl_v1_text_proto
    78  	File_google_cloud_automl_v1_text_segment_proto       = src.File_google_cloud_automl_v1_text_segment_proto
    79  	File_google_cloud_automl_v1_text_sentiment_proto     = src.File_google_cloud_automl_v1_text_sentiment_proto
    80  	File_google_cloud_automl_v1_translation_proto        = src.File_google_cloud_automl_v1_translation_proto
    81  	Model_DeploymentState_name                           = src.Model_DeploymentState_name
    82  	Model_DeploymentState_value                          = src.Model_DeploymentState_value
    83  )
    84  
    85  // Contains annotation information that is relevant to AutoML.
    86  //
    87  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
    88  type AnnotationPayload = src.AnnotationPayload
    89  type AnnotationPayload_Classification = src.AnnotationPayload_Classification
    90  type AnnotationPayload_ImageObjectDetection = src.AnnotationPayload_ImageObjectDetection
    91  type AnnotationPayload_TextExtraction = src.AnnotationPayload_TextExtraction
    92  type AnnotationPayload_TextSentiment = src.AnnotationPayload_TextSentiment
    93  type AnnotationPayload_Translation = src.AnnotationPayload_Translation
    94  
    95  // A definition of an annotation spec.
    96  //
    97  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
    98  type AnnotationSpec = src.AnnotationSpec
    99  
   100  // AutoMlClient is the client API for AutoMl service. For semantics around ctx
   101  // use and closing/ending streaming RPCs, please refer to
   102  // https://godoc.org/google.golang.org/grpc#ClientConn.NewStream.
   103  //
   104  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   105  type AutoMlClient = src.AutoMlClient
   106  
   107  // AutoMlServer is the server API for AutoMl service.
   108  //
   109  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   110  type AutoMlServer = src.AutoMlServer
   111  
   112  // Input configuration for BatchPredict Action. The format of input depends on
   113  // the ML problem of the model used for prediction. As input source the
   114  // [gcs_source][google.cloud.automl.v1.InputConfig.gcs_source] is expected,
   115  // unless specified otherwise. The formats are represented in EBNF with commas
   116  // being literal and with non-terminal symbols defined near the end of this
   117  // comment. The formats are: <h4>AutoML Vision</h4> <div
   118  // class="ds-selector-tabs"><section><h5>Classification</h5> One or more CSV
   119  // files where each line is a single column: GCS_FILE_PATH The Google Cloud
   120  // Storage location of an image of up to 30MB in size. Supported extensions:
   121  // .JPEG, .GIF, .PNG. This path is treated as the ID in the batch predict
   122  // output. Sample rows: gs://folder/image1.jpeg gs://folder/image2.gif
   123  // gs://folder/image3.png </section><section><h5>Object Detection</h5> One or
   124  // more CSV files where each line is a single column: GCS_FILE_PATH The Google
   125  // Cloud Storage location of an image of up to 30MB in size. Supported
   126  // extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the batch
   127  // predict output. Sample rows: gs://folder/image1.jpeg gs://folder/image2.gif
   128  // gs://folder/image3.png </section> </div> <h4>AutoML Video Intelligence</h4>
   129  // <div class="ds-selector-tabs"><section><h5>Classification</h5> One or more
   130  // CSV files where each line is a single column:
   131  // GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END `GCS_FILE_PATH` is the
   132  // Google Cloud Storage location of video up to 50GB in size and up to 3h in
   133  // duration duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
   134  // `TIME_SEGMENT_START` and `TIME_SEGMENT_END` must be within the length of the
   135  // video, and the end time must be after the start time. Sample rows:
   136  // gs://folder/video1.mp4,10,40 gs://folder/video1.mp4,20,60
   137  // gs://folder/vid2.mov,0,inf </section><section><h5>Object Tracking</h5> One
   138  // or more CSV files where each line is a single column:
   139  // GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END `GCS_FILE_PATH` is the
   140  // Google Cloud Storage location of video up to 50GB in size and up to 3h in
   141  // duration duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
   142  // `TIME_SEGMENT_START` and `TIME_SEGMENT_END` must be within the length of the
   143  // video, and the end time must be after the start time. Sample rows:
   144  // gs://folder/video1.mp4,10,40 gs://folder/video1.mp4,20,60
   145  // gs://folder/vid2.mov,0,inf </section> </div> <h4>AutoML Natural
   146  // Language</h4> <div class="ds-selector-tabs"><section><h5>Classification</h5>
   147  // One or more CSV files where each line is a single column: GCS_FILE_PATH
   148  // `GCS_FILE_PATH` is the Google Cloud Storage location of a text file.
   149  // Supported file extensions: .TXT, .PDF, .TIF, .TIFF Text files can be no
   150  // larger than 10MB in size. Sample rows: gs://folder/text1.txt
   151  // gs://folder/text2.pdf gs://folder/text3.tif </section><section><h5>Sentiment
   152  // Analysis</h5> One or more CSV files where each line is a single column:
   153  // GCS_FILE_PATH `GCS_FILE_PATH` is the Google Cloud Storage location of a text
   154  // file. Supported file extensions: .TXT, .PDF, .TIF, .TIFF Text files can be
   155  // no larger than 128kB in size. Sample rows: gs://folder/text1.txt
   156  // gs://folder/text2.pdf gs://folder/text3.tif </section><section><h5>Entity
   157  // Extraction</h5> One or more JSONL (JSON Lines) files that either provide
   158  // inline text or documents. You can only use one format, either inline text or
   159  // documents, for a single call to [AutoMl.BatchPredict]. Each JSONL file
   160  // contains a per line a proto that wraps a temporary user-assigned TextSnippet
   161  // ID (string up to 2000 characters long) called "id", a TextSnippet proto (in
   162  // JSON representation) and zero or more TextFeature protos. Any given text
   163  // snippet content must have 30,000 characters or less, and also be UTF-8 NFC
   164  // encoded (ASCII already is). The IDs provided should be unique. Each document
   165  // JSONL file contains, per line, a proto that wraps a Document proto with
   166  // `input_config` set. Each document cannot exceed 2MB in size. Supported
   167  // document extensions: .PDF, .TIF, .TIFF Each JSONL file must not exceed 100MB
   168  // in size, and no more than 20 JSONL files may be passed. Sample inline JSONL
   169  // file (Shown with artificial line breaks. Actual line breaks are denoted by
   170  // "\n".): { "id": "my_first_id", "text_snippet": { "content": "dog car cat"},
   171  // "text_features": [ { "text_segment": {"start_offset": 4, "end_offset": 6},
   172  // "structural_type": PARAGRAPH, "bounding_poly": { "normalized_vertices": [
   173  // {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3,
   174  // "y": 0.1}, ] }, } ], }\n { "id": "2", "text_snippet": { "content": "Extended
   175  // sample content", "mime_type": "text/plain" } } Sample document JSONL file
   176  // (Shown with artificial line breaks. Actual line breaks are denoted by
   177  // "\n".): { "document": { "input_config": { "gcs_source": { "input_uris": [
   178  // "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": {
   179  // "gcs_source": { "input_uris": [ "gs://folder/document2.tif" ] } } } }
   180  // </section> </div> <h4>AutoML Tables</h4><div
   181  // class="ui-datasection-main"><section class="selected"> See [Preparing your
   182  // training data](https://cloud.google.com/automl-tables/docs/predict-batch)
   183  // for more information. You can use either
   184  // [gcs_source][google.cloud.automl.v1.BatchPredictInputConfig.gcs_source] or
   185  // [bigquery_source][BatchPredictInputConfig.bigquery_source]. **For
   186  // gcs_source:** CSV file(s), each by itself 10GB or smaller and total size
   187  // must be 100GB or smaller, where first file must have a header containing
   188  // column names. If the first row of a subsequent file is the same as the
   189  // header, then it is also treated as a header. All other rows contain values
   190  // for the corresponding columns. The column names must contain the model's
   191  // [input_feature_column_specs'][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs]
   192  // [display_name-s][google.cloud.automl.v1.ColumnSpec.display_name] (order
   193  // doesn't matter). The columns corresponding to the model's input feature
   194  // column specs must contain values compatible with the column spec's data
   195  // types. Prediction on all the rows, i.e. the CSV lines, will be attempted.
   196  // Sample rows from a CSV file: <pre> "First Name","Last
   197  // Name","Dob","Addresses"
   198  // "John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
   199  // "Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
   200  // </pre> **For bigquery_source:** The URI of a BigQuery table. The user data
   201  // size of the BigQuery table must be 100GB or smaller. The column names must
   202  // contain the model's
   203  // [input_feature_column_specs'][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs]
   204  // [display_name-s][google.cloud.automl.v1.ColumnSpec.display_name] (order
   205  // doesn't matter). The columns corresponding to the model's input feature
   206  // column specs must contain values compatible with the column spec's data
   207  // types. Prediction on all the rows of the table will be attempted. </section>
   208  // </div> **Input field definitions:** `GCS_FILE_PATH` : The path to a file on
   209  // Google Cloud Storage. For example, "gs://folder/video.avi".
   210  // `TIME_SEGMENT_START` : (`TIME_OFFSET`) Expresses a beginning, inclusive, of
   211  // a time segment within an example that has a time dimension (e.g. video).
   212  // `TIME_SEGMENT_END` : (`TIME_OFFSET`) Expresses an end, exclusive, of a time
   213  // segment within n example that has a time dimension (e.g. video).
   214  // `TIME_OFFSET` : A number of seconds as measured from the start of an example
   215  // (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is
   216  // allowed, and it means the end of the example. **Errors:** If any of the
   217  // provided CSV files can't be parsed or if more than certain percent of CSV
   218  // rows cannot be processed then the operation fails and prediction does not
   219  // happen. Regardless of overall success or failure the per-row failures, up to
   220  // a certain count cap, will be listed in Operation.metadata.partial_failures.
   221  //
   222  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   223  type BatchPredictInputConfig = src.BatchPredictInputConfig
   224  type BatchPredictInputConfig_GcsSource = src.BatchPredictInputConfig_GcsSource
   225  
   226  // Details of BatchPredict operation.
   227  //
   228  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   229  type BatchPredictOperationMetadata = src.BatchPredictOperationMetadata
   230  
   231  // Further describes this batch predict's output. Supplements
   232  // [BatchPredictOutputConfig][google.cloud.automl.v1.BatchPredictOutputConfig].
   233  //
   234  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   235  type BatchPredictOperationMetadata_BatchPredictOutputInfo = src.BatchPredictOperationMetadata_BatchPredictOutputInfo
   236  type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory = src.BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory
   237  
   238  // Output configuration for BatchPredict Action. As destination the
   239  // [gcs_destination][google.cloud.automl.v1.BatchPredictOutputConfig.gcs_destination]
   240  // must be set unless specified otherwise for a domain. If gcs_destination is
   241  // set then in the given directory a new directory is created. Its name will be
   242  // "prediction-<model-display-name>-<timestamp-of-prediction-call>", where
   243  // timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. The contents of it
   244  // depends on the ML problem the predictions are made for. - For Image
   245  // Classification: In the created directory files
   246  // `image_classification_1.jsonl`,
   247  // `image_classification_2.jsonl`,...,`image_classification_N.jsonl` will be
   248  // created, where N may be 1, and depends on the total number of the
   249  // successfully predicted images and annotations. A single image will be listed
   250  // only once with all its annotations, and its annotations will never be split
   251  // across files. Each .JSONL file will contain, per line, a JSON representation
   252  // of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero
   253  // or more AnnotationPayload protos (called annotations), which have
   254  // classification detail populated. If prediction for any image failed
   255  // (partially or completely), then an additional `errors_1.jsonl`,
   256  // `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on
   257  // total number of failed predictions). These files will have a JSON
   258  // representation of a proto that wraps the same "ID" : "<id_value>" but here
   259  // followed by exactly one
   260  // [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
   261  // containing only `code` and `message`fields. - For Image Object Detection: In
   262  // the created directory files `image_object_detection_1.jsonl`,
   263  // `image_object_detection_2.jsonl`,...,`image_object_detection_N.jsonl` will
   264  // be created, where N may be 1, and depends on the total number of the
   265  // successfully predicted images and annotations. Each .JSONL file will
   266  // contain, per line, a JSON representation of a proto that wraps image's "ID"
   267  // : "<id_value>" followed by a list of zero or more AnnotationPayload protos
   268  // (called annotations), which have image_object_detection detail populated. A
   269  // single image will be listed only once with all its annotations, and its
   270  // annotations will never be split across files. If prediction for any image
   271  // failed (partially or completely), then additional `errors_1.jsonl`,
   272  // `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on
   273  // total number of failed predictions). These files will have a JSON
   274  // representation of a proto that wraps the same "ID" : "<id_value>" but here
   275  // followed by exactly one
   276  // [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
   277  // containing only `code` and `message`fields. - For Video Classification: In
   278  // the created directory a video_classification.csv file, and a .JSON file per
   279  // each video classification requested in the input (i.e. each line in given
   280  // CSV(s)), will be created. The format of video_classification.csv is:
   281  // GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
   282  // where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
   283  // the prediction input lines (i.e. video_classification.csv has precisely the
   284  // same number of lines as the prediction input had.) JSON_FILE_NAME = Name of
   285  // .JSON file in the output directory, which contains prediction responses for
   286  // the video time segment. STATUS = "OK" if prediction completed successfully,
   287  // or an error code with message otherwise. If STATUS is not "OK" then the
   288  // .JSON file for that line may not exist or be empty. Each .JSON file,
   289  // assuming STATUS is "OK", will contain a list of AnnotationPayload protos in
   290  // JSON format, which are the predictions for the video time segment the file
   291  // is assigned to in the video_classification.csv. All AnnotationPayload protos
   292  // will have video_classification field set, and will be sorted by
   293  // video_classification.type field (note that the returned types are governed
   294  // by `classifaction_types` parameter in
   295  // [PredictService.BatchPredictRequest.params][]). - For Video Object Tracking:
   296  // In the created directory a video_object_tracking.csv file will be created,
   297  // and multiple files video_object_trackinng_1.json,
   298  // video_object_trackinng_2.json,..., video_object_trackinng_N.json, where N is
   299  // the number of requests in the input (i.e. the number of lines in given
   300  // CSV(s)). The format of video_object_tracking.csv is:
   301  // GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
   302  // where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
   303  // the prediction input lines (i.e. video_object_tracking.csv has precisely the
   304  // same number of lines as the prediction input had.) JSON_FILE_NAME = Name of
   305  // .JSON file in the output directory, which contains prediction responses for
   306  // the video time segment. STATUS = "OK" if prediction completed successfully,
   307  // or an error code with message otherwise. If STATUS is not "OK" then the
   308  // .JSON file for that line may not exist or be empty. Each .JSON file,
   309  // assuming STATUS is "OK", will contain a list of AnnotationPayload protos in
   310  // JSON format, which are the predictions for each frame of the video time
   311  // segment the file is assigned to in video_object_tracking.csv. All
   312  // AnnotationPayload protos will have video_object_tracking field set. - For
   313  // Text Classification: In the created directory files
   314  // `text_classification_1.jsonl`,
   315  // `text_classification_2.jsonl`,...,`text_classification_N.jsonl` will be
   316  // created, where N may be 1, and depends on the total number of inputs and
   317  // annotations found. Each .JSONL file will contain, per line, a JSON
   318  // representation of a proto that wraps input text file (or document) in the
   319  // text snippet (or document) proto and a list of zero or more
   320  // AnnotationPayload protos (called annotations), which have classification
   321  // detail populated. A single text file (or document) will be listed only once
   322  // with all its annotations, and its annotations will never be split across
   323  // files. If prediction for any input file (or document) failed (partially or
   324  // completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
   325  // `errors_N.jsonl` files will be created (N depends on total number of failed
   326  // predictions). These files will have a JSON representation of a proto that
   327  // wraps input file followed by exactly one
   328  // [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
   329  // containing only `code` and `message`. - For Text Sentiment: In the created
   330  // directory files `text_sentiment_1.jsonl`,
   331  // `text_sentiment_2.jsonl`,...,`text_sentiment_N.jsonl` will be created, where
   332  // N may be 1, and depends on the total number of inputs and annotations found.
   333  // Each .JSONL file will contain, per line, a JSON representation of a proto
   334  // that wraps input text file (or document) in the text snippet (or document)
   335  // proto and a list of zero or more AnnotationPayload protos (called
   336  // annotations), which have text_sentiment detail populated. A single text file
   337  // (or document) will be listed only once with all its annotations, and its
   338  // annotations will never be split across files. If prediction for any input
   339  // file (or document) failed (partially or completely), then additional
   340  // `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl` files will be
   341  // created (N depends on total number of failed predictions). These files will
   342  // have a JSON representation of a proto that wraps input file followed by
   343  // exactly one
   344  // [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
   345  // containing only `code` and `message`. - For Text Extraction: In the created
   346  // directory files `text_extraction_1.jsonl`,
   347  // `text_extraction_2.jsonl`,...,`text_extraction_N.jsonl` will be created,
   348  // where N may be 1, and depends on the total number of inputs and annotations
   349  // found. The contents of these .JSONL file(s) depend on whether the input used
   350  // inline text, or documents. If input was inline, then each .JSONL file will
   351  // contain, per line, a JSON representation of a proto that wraps given in
   352  // request text snippet's "id" (if specified), followed by input text snippet,
   353  // and a list of zero or more AnnotationPayload protos (called annotations),
   354  // which have text_extraction detail populated. A single text snippet will be
   355  // listed only once with all its annotations, and its annotations will never be
   356  // split across files. If input used documents, then each .JSONL file will
   357  // contain, per line, a JSON representation of a proto that wraps given in
   358  // request document proto, followed by its OCR-ed representation in the form of
   359  // a text snippet, finally followed by a list of zero or more AnnotationPayload
   360  // protos (called annotations), which have text_extraction detail populated and
   361  // refer, via their indices, to the OCR-ed text snippet. A single document (and
   362  // its text snippet) will be listed only once with all its annotations, and its
   363  // annotations will never be split across files. If prediction for any text
   364  // snippet failed (partially or completely), then additional `errors_1.jsonl`,
   365  // `errors_2.jsonl`,..., `errors_N.jsonl` files will be created (N depends on
   366  // total number of failed predictions). These files will have a JSON
   367  // representation of a proto that wraps either the "id" : "<id_value>" (in case
   368  // of inline) or the document proto (in case of document) but here followed by
   369  // exactly one
   370  // [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
   371  // containing only `code` and `message`. - For Tables: Output depends on
   372  // whether
   373  // [gcs_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.gcs_destination]
   374  // or
   375  // [bigquery_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.bigquery_destination]
   376  // is set (either is allowed). Google Cloud Storage case: In the created
   377  // directory files `tables_1.csv`, `tables_2.csv`,..., `tables_N.csv` will be
   378  // created, where N may be 1, and depends on the total number of the
   379  // successfully predicted rows. For all CLASSIFICATION
   380  // [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
   381  // Each .csv file will contain a header, listing all columns'
   382  // [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name] given
   383  // on input followed by M target column names in the format of
   384  // "<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
   385  // [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>_<target
   386  // value>_score" where M is the number of distinct target values, i.e. number
   387  // of distinct values in the target column of the table used to train the
   388  // model. Subsequent lines will contain the respective values of successfully
   389  // predicted rows, with the last, i.e. the target, columns having the
   390  // corresponding prediction
   391  // [scores][google.cloud.automl.v1p1beta.TablesAnnotation.score]. For
   392  // REGRESSION and FORECASTING
   393  // [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]:
   394  // Each .csv file will contain a header, listing all columns'
   395  // [display_name-s][google.cloud.automl.v1p1beta.display_name] given on input
   396  // followed by the predicted target column with name in the format of
   397  // "predicted_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
   398  // [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>"
   399  // Subsequent lines will contain the respective values of successfully
   400  // predicted rows, with the last, i.e. the target, column having the predicted
   401  // target value. If prediction for any rows failed, then an additional
   402  // `errors_1.csv`, `errors_2.csv`,..., `errors_N.csv` will be created (N
   403  // depends on total number of failed rows). These files will have analogous
   404  // format as `tables_*.csv`, but always with a single target column having
   405  // [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
   406  // represented as a JSON string, and containing only `code` and `message`.
   407  // BigQuery case:
   408  // [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
   409  // pointing to a BigQuery project must be set. In the given project a new
   410  // dataset will be created with name
   411  // `prediction_<model-display-name>_<timestamp-of-prediction-call>` where
   412  // <model-display-name> will be made BigQuery-dataset-name compatible (e.g.
   413  // most special characters will become underscores), and timestamp will be in
   414  // YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset two
   415  // tables will be created, `predictions`, and `errors`. The `predictions`
   416  // table's column names will be the input columns'
   417  // [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name]
   418  // followed by the target column with name in the format of
   419  // "predicted_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
   420  // [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>" The
   421  // input feature columns will contain the respective values of successfully
   422  // predicted rows, with the target column having an ARRAY of
   423  // [AnnotationPayloads][google.cloud.automl.v1p1beta.AnnotationPayload],
   424  // represented as STRUCT-s, containing
   425  // [TablesAnnotation][google.cloud.automl.v1p1beta.TablesAnnotation]. The
   426  // `errors` table contains rows for which the prediction has failed, it has
   427  // analogous input columns while the target column name is in the format of
   428  // "errors_<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec]
   429  // [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>", and
   430  // as a value has
   431  // [`google.rpc.Status`](https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
   432  // represented as a STRUCT, and containing only `code` and `message`.
   433  //
   434  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   435  type BatchPredictOutputConfig = src.BatchPredictOutputConfig
   436  type BatchPredictOutputConfig_GcsDestination = src.BatchPredictOutputConfig_GcsDestination
   437  
   438  // Request message for
   439  // [PredictionService.BatchPredict][google.cloud.automl.v1.PredictionService.BatchPredict].
   440  //
   441  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   442  type BatchPredictRequest = src.BatchPredictRequest
   443  
   444  // Result of the Batch Predict. This message is returned in
   445  // [response][google.longrunning.Operation.response] of the operation returned
   446  // by the
   447  // [PredictionService.BatchPredict][google.cloud.automl.v1.PredictionService.BatchPredict].
   448  //
   449  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   450  type BatchPredictResult = src.BatchPredictResult
   451  
   452  // Bounding box matching model metrics for a single intersection-over-union
   453  // threshold and multiple label match confidence thresholds.
   454  //
   455  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   456  type BoundingBoxMetricsEntry = src.BoundingBoxMetricsEntry
   457  
   458  // Metrics for a single confidence threshold.
   459  //
   460  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   461  type BoundingBoxMetricsEntry_ConfidenceMetricsEntry = src.BoundingBoxMetricsEntry_ConfidenceMetricsEntry
   462  
   463  // A bounding polygon of a detected object on a plane. On output both vertices
   464  // and normalized_vertices are provided. The polygon is formed by connecting
   465  // vertices in the order they are listed.
   466  //
   467  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   468  type BoundingPoly = src.BoundingPoly
   469  
   470  // Contains annotation details specific to classification.
   471  //
   472  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   473  type ClassificationAnnotation = src.ClassificationAnnotation
   474  
   475  // Model evaluation metrics for classification problems. Note: For Video
   476  // Classification this metrics only describe quality of the Video
   477  // Classification predictions of "segment_classification" type.
   478  //
   479  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   480  type ClassificationEvaluationMetrics = src.ClassificationEvaluationMetrics
   481  
   482  // Metrics for a single confidence threshold.
   483  //
   484  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   485  type ClassificationEvaluationMetrics_ConfidenceMetricsEntry = src.ClassificationEvaluationMetrics_ConfidenceMetricsEntry
   486  
   487  // Confusion matrix of the model running the classification.
   488  //
   489  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   490  type ClassificationEvaluationMetrics_ConfusionMatrix = src.ClassificationEvaluationMetrics_ConfusionMatrix
   491  
   492  // Output only. A row in the confusion matrix.
   493  //
   494  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   495  type ClassificationEvaluationMetrics_ConfusionMatrix_Row = src.ClassificationEvaluationMetrics_ConfusionMatrix_Row
   496  
   497  // Type of the classification problem.
   498  //
   499  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   500  type ClassificationType = src.ClassificationType
   501  
   502  // Details of CreateDataset operation.
   503  //
   504  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   505  type CreateDatasetOperationMetadata = src.CreateDatasetOperationMetadata
   506  
   507  // Request message for
   508  // [AutoMl.CreateDataset][google.cloud.automl.v1.AutoMl.CreateDataset].
   509  //
   510  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   511  type CreateDatasetRequest = src.CreateDatasetRequest
   512  
   513  // Details of CreateModel operation.
   514  //
   515  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   516  type CreateModelOperationMetadata = src.CreateModelOperationMetadata
   517  
   518  // Request message for
   519  // [AutoMl.CreateModel][google.cloud.automl.v1.AutoMl.CreateModel].
   520  //
   521  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   522  type CreateModelRequest = src.CreateModelRequest
   523  
   524  // A workspace for solving a single, particular machine learning (ML) problem.
   525  // A workspace contains examples that may be annotated.
   526  //
   527  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   528  type Dataset = src.Dataset
   529  type Dataset_ImageClassificationDatasetMetadata = src.Dataset_ImageClassificationDatasetMetadata
   530  type Dataset_ImageObjectDetectionDatasetMetadata = src.Dataset_ImageObjectDetectionDatasetMetadata
   531  type Dataset_TextClassificationDatasetMetadata = src.Dataset_TextClassificationDatasetMetadata
   532  type Dataset_TextExtractionDatasetMetadata = src.Dataset_TextExtractionDatasetMetadata
   533  type Dataset_TextSentimentDatasetMetadata = src.Dataset_TextSentimentDatasetMetadata
   534  type Dataset_TranslationDatasetMetadata = src.Dataset_TranslationDatasetMetadata
   535  
   536  // Request message for
   537  // [AutoMl.DeleteDataset][google.cloud.automl.v1.AutoMl.DeleteDataset].
   538  //
   539  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   540  type DeleteDatasetRequest = src.DeleteDatasetRequest
   541  
   542  // Request message for
   543  // [AutoMl.DeleteModel][google.cloud.automl.v1.AutoMl.DeleteModel].
   544  //
   545  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   546  type DeleteModelRequest = src.DeleteModelRequest
   547  
   548  // Details of operations that perform deletes of any entities.
   549  //
   550  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   551  type DeleteOperationMetadata = src.DeleteOperationMetadata
   552  
   553  // Details of DeployModel operation.
   554  //
   555  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   556  type DeployModelOperationMetadata = src.DeployModelOperationMetadata
   557  
   558  // Request message for
   559  // [AutoMl.DeployModel][google.cloud.automl.v1.AutoMl.DeployModel].
   560  //
   561  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   562  type DeployModelRequest = src.DeployModelRequest
   563  type DeployModelRequest_ImageClassificationModelDeploymentMetadata = src.DeployModelRequest_ImageClassificationModelDeploymentMetadata
   564  type DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata = src.DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata
   565  
   566  // A structured text document e.g. a PDF.
   567  //
   568  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   569  type Document = src.Document
   570  
   571  // Message that describes dimension of a document.
   572  //
   573  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   574  type DocumentDimensions = src.DocumentDimensions
   575  
   576  // Unit of the document dimension.
   577  //
   578  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   579  type DocumentDimensions_DocumentDimensionUnit = src.DocumentDimensions_DocumentDimensionUnit
   580  
   581  // Input configuration of a [Document][google.cloud.automl.v1.Document].
   582  //
   583  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   584  type DocumentInputConfig = src.DocumentInputConfig
   585  
   586  // Describes the layout information of a
   587  // [text_segment][google.cloud.automl.v1.Document.Layout.text_segment] in the
   588  // document.
   589  //
   590  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   591  type Document_Layout = src.Document_Layout
   592  
   593  // The type of TextSegment in the context of the original document.
   594  //
   595  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   596  type Document_Layout_TextSegmentType = src.Document_Layout_TextSegmentType
   597  
   598  // Example data used for training or prediction.
   599  //
   600  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   601  type ExamplePayload = src.ExamplePayload
   602  type ExamplePayload_Document = src.ExamplePayload_Document
   603  type ExamplePayload_Image = src.ExamplePayload_Image
   604  type ExamplePayload_TextSnippet = src.ExamplePayload_TextSnippet
   605  
   606  // Details of ExportData operation.
   607  //
   608  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   609  type ExportDataOperationMetadata = src.ExportDataOperationMetadata
   610  
   611  // Further describes this export data's output. Supplements
   612  // [OutputConfig][google.cloud.automl.v1.OutputConfig].
   613  //
   614  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   615  type ExportDataOperationMetadata_ExportDataOutputInfo = src.ExportDataOperationMetadata_ExportDataOutputInfo
   616  type ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory = src.ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory
   617  
   618  // Request message for
   619  // [AutoMl.ExportData][google.cloud.automl.v1.AutoMl.ExportData].
   620  //
   621  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   622  type ExportDataRequest = src.ExportDataRequest
   623  
   624  // Details of ExportModel operation.
   625  //
   626  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   627  type ExportModelOperationMetadata = src.ExportModelOperationMetadata
   628  
   629  // Further describes the output of model export. Supplements
   630  // [ModelExportOutputConfig][google.cloud.automl.v1.ModelExportOutputConfig].
   631  //
   632  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   633  type ExportModelOperationMetadata_ExportModelOutputInfo = src.ExportModelOperationMetadata_ExportModelOutputInfo
   634  
   635  // Request message for
   636  // [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]. Models need
   637  // to be enabled for exporting, otherwise an error code will be returned.
   638  //
   639  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   640  type ExportModelRequest = src.ExportModelRequest
   641  
   642  // The Google Cloud Storage location where the output is to be written to.
   643  //
   644  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   645  type GcsDestination = src.GcsDestination
   646  
   647  // The Google Cloud Storage location for the input content.
   648  //
   649  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   650  type GcsSource = src.GcsSource
   651  
   652  // Request message for
   653  // [AutoMl.GetAnnotationSpec][google.cloud.automl.v1.AutoMl.GetAnnotationSpec].
   654  //
   655  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   656  type GetAnnotationSpecRequest = src.GetAnnotationSpecRequest
   657  
   658  // Request message for
   659  // [AutoMl.GetDataset][google.cloud.automl.v1.AutoMl.GetDataset].
   660  //
   661  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   662  type GetDatasetRequest = src.GetDatasetRequest
   663  
   664  // Request message for
   665  // [AutoMl.GetModelEvaluation][google.cloud.automl.v1.AutoMl.GetModelEvaluation].
   666  //
   667  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   668  type GetModelEvaluationRequest = src.GetModelEvaluationRequest
   669  
   670  // Request message for
   671  // [AutoMl.GetModel][google.cloud.automl.v1.AutoMl.GetModel].
   672  //
   673  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   674  type GetModelRequest = src.GetModelRequest
   675  
   676  // A representation of an image. Only images up to 30MB in size are supported.
   677  //
   678  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   679  type Image = src.Image
   680  
   681  // Dataset metadata that is specific to image classification.
   682  //
   683  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   684  type ImageClassificationDatasetMetadata = src.ImageClassificationDatasetMetadata
   685  
   686  // Model deployment metadata specific to Image Classification.
   687  //
   688  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   689  type ImageClassificationModelDeploymentMetadata = src.ImageClassificationModelDeploymentMetadata
   690  
   691  // Model metadata for image classification.
   692  //
   693  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   694  type ImageClassificationModelMetadata = src.ImageClassificationModelMetadata
   695  
   696  // Annotation details for image object detection.
   697  //
   698  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   699  type ImageObjectDetectionAnnotation = src.ImageObjectDetectionAnnotation
   700  
   701  // Dataset metadata specific to image object detection.
   702  //
   703  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   704  type ImageObjectDetectionDatasetMetadata = src.ImageObjectDetectionDatasetMetadata
   705  
   706  // Model evaluation metrics for image object detection problems. Evaluates
   707  // prediction quality of labeled bounding boxes.
   708  //
   709  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   710  type ImageObjectDetectionEvaluationMetrics = src.ImageObjectDetectionEvaluationMetrics
   711  
   712  // Model deployment metadata specific to Image Object Detection.
   713  //
   714  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   715  type ImageObjectDetectionModelDeploymentMetadata = src.ImageObjectDetectionModelDeploymentMetadata
   716  
   717  // Model metadata specific to image object detection.
   718  //
   719  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   720  type ImageObjectDetectionModelMetadata = src.ImageObjectDetectionModelMetadata
   721  type Image_ImageBytes = src.Image_ImageBytes
   722  
   723  // Details of ImportData operation.
   724  //
   725  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   726  type ImportDataOperationMetadata = src.ImportDataOperationMetadata
   727  
   728  // Request message for
   729  // [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData].
   730  //
   731  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
   732  type ImportDataRequest = src.ImportDataRequest
   733  
   734  // Input configuration for
   735  // [AutoMl.ImportData][google.cloud.automl.v1.AutoMl.ImportData] action. The
   736  // format of input depends on dataset_metadata the Dataset into which the
   737  // import is happening has. As input source the
   738  // [gcs_source][google.cloud.automl.v1.InputConfig.gcs_source] is expected,
   739  // unless specified otherwise. Additionally any input .CSV file by itself must
   740  // be 100MB or smaller, unless specified otherwise. If an "example" file (that
   741  // is, image, video etc.) with identical content (even if it had different
   742  // `GCS_FILE_PATH`) is mentioned multiple times, then its label, bounding boxes
   743  // etc. are appended. The same file should be always provided with the same
   744  // `ML_USE` and `GCS_FILE_PATH`, if it is not, then these values are
   745  // nondeterministically selected from the given ones. The formats are
   746  // represented in EBNF with commas being literal and with non-terminal symbols
   747  // defined near the end of this comment. The formats are: <h4>AutoML
   748  // Vision</h4> <div class="ds-selector-tabs"><section><h5>Classification</h5>
   749  // See [Preparing your training
   750  // data](https://cloud.google.com/vision/automl/docs/prepare) for more
   751  // information. CSV file(s) with each line in format:
   752  // ML_USE,GCS_FILE_PATH,LABEL,LABEL,... * `ML_USE` - Identifies the data set
   753  // that the current row (file) applies to. This value can be one of the
   754  // following: * `TRAIN` - Rows in this file are used to train the model. *
   755  // `TEST` - Rows in this file are used to test the model during training. *
   756  // `UNASSIGNED` - Rows in this file are not categorized. They are Automatically
   757  // divided into train and test data. 80% for training and 20% for testing. -
   758  // `GCS_FILE_PATH` - The Google Cloud Storage location of an image of up to
   759  // 30MB in size. Supported extensions: .JPEG, .GIF, .PNG, .WEBP, .BMP, .TIFF,
   760  // .ICO. * `LABEL` - A label that identifies the object in the image. For the
   761  // `MULTICLASS` classification type, at most one `LABEL` is allowed per image.
   762  // If an image has not yet been labeled, then it should be mentioned just once
   763  // with no `LABEL`. Some sample rows: TRAIN,gs://folder/image1.jpg,daisy
   764  // TEST,gs://folder/image2.jpg,dandelion,tulip,rose
   765  // UNASSIGNED,gs://folder/image3.jpg,daisy UNASSIGNED,gs://folder/image4.jpg
   766  // </section><section><h5>Object Detection</h5> See [Preparing your training
   767  // data](https://cloud.google.com/vision/automl/object-detection/docs/prepare)
   768  // for more information. A CSV file(s) with each line in format:
   769  // ML_USE,GCS_FILE_PATH,[LABEL],(BOUNDING_BOX | ,,,,,,,) * `ML_USE` -
   770  // Identifies the data set that the current row (file) applies to. This value
   771  // can be one of the following: * `TRAIN` - Rows in this file are used to train
   772  // the model. * `TEST` - Rows in this file are used to test the model during
   773  // training. * `UNASSIGNED` - Rows in this file are not categorized. They are
   774  // Automatically divided into train and test data. 80% for training and 20% for
   775  // testing. - `GCS_FILE_PATH` - The Google Cloud Storage location of an image
   776  // of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. Each image
   777  // is assumed to be exhaustively labeled. - `LABEL` - A label that identifies
   778  // the object in the image specified by the `BOUNDING_BOX`. - `BOUNDING BOX` -
   779  // The vertices of an object in the example image. The minimum allowed
   780  // `BOUNDING_BOX` edge length is 0.01, and no more than 500 `BOUNDING_BOX`
   781  // instances per image are allowed (one `BOUNDING_BOX` per line). If an image
   782  // has no looked for objects then it should be mentioned just once with no
   783  // LABEL and the ",,,,,,," in place of the `BOUNDING_BOX`. **Four sample
   784  // rows:** TRAIN,gs://folder/image1.png,car,0.1,0.1,,,0.3,0.3,,
   785  // TRAIN,gs://folder/image1.png,bike,.7,.6,,,.8,.9,,
   786  // UNASSIGNED,gs://folder/im2.png,car,0.1,0.1,0.2,0.1,0.2,0.3,0.1,0.3
   787  // TEST,gs://folder/im3.png,,,,,,,,, </section> </div> <h4>AutoML Video
   788  // Intelligence</h4> <div
   789  // class="ds-selector-tabs"><section><h5>Classification</h5> See [Preparing
   790  // your training
   791  // data](https://cloud.google.com/video-intelligence/automl/docs/prepare) for
   792  // more information. CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH
   793  // For `ML_USE`, do not use `VALIDATE`. `GCS_FILE_PATH` is the path to another
   794  // .csv file that describes training example for a given `ML_USE`, using the
   795  // following row format:
   796  // GCS_FILE_PATH,(LABEL,TIME_SEGMENT_START,TIME_SEGMENT_END | ,,) Here
   797  // `GCS_FILE_PATH` leads to a video of up to 50GB in size and up to 3h
   798  // duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
   799  // `TIME_SEGMENT_START` and `TIME_SEGMENT_END` must be within the length of the
   800  // video, and the end time must be after the start time. Any segment of a video
   801  // which has one or more labels on it, is considered a hard negative for all
   802  // other labels. Any segment with no labels on it is considered to be unknown.
   803  // If a whole video is unknown, then it should be mentioned just once with ",,"
   804  // in place of `LABEL, TIME_SEGMENT_START,TIME_SEGMENT_END`. Sample top level
   805  // CSV file: TRAIN,gs://folder/train_videos.csv
   806  // TEST,gs://folder/test_videos.csv UNASSIGNED,gs://folder/other_videos.csv
   807  // Sample rows of a CSV file for a particular ML_USE:
   808  // gs://folder/video1.avi,car,120,180.000021
   809  // gs://folder/video1.avi,bike,150,180.000021 gs://folder/vid2.avi,car,0,60.5
   810  // gs://folder/vid3.avi,,, </section><section><h5>Object Tracking</h5> See
   811  // [Preparing your training
   812  // data](/video-intelligence/automl/object-tracking/docs/prepare) for more
   813  // information. CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH For
   814  // `ML_USE`, do not use `VALIDATE`. `GCS_FILE_PATH` is the path to another .csv
   815  // file that describes training example for a given `ML_USE`, using the
   816  // following row format:
   817  // GCS_FILE_PATH,LABEL,[INSTANCE_ID],TIMESTAMP,BOUNDING_BOX or
   818  // GCS_FILE_PATH,,,,,,,,,, Here `GCS_FILE_PATH` leads to a video of up to 50GB
   819  // in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4,
   820  // .AVI. Providing `INSTANCE_ID`s can help to obtain a better model. When a
   821  // specific labeled entity leaves the video frame, and shows up afterwards it
   822  // is not required, albeit preferable, that the same `INSTANCE_ID` is given to
   823  // it. `TIMESTAMP` must be within the length of the video, the `BOUNDING_BOX`
   824  // is assumed to be drawn on the closest video's frame to the `TIMESTAMP`. Any
   825  // mentioned by the `TIMESTAMP` frame is expected to be exhaustively labeled
   826  // and no more than 500 `BOUNDING_BOX`-es per frame are allowed. If a whole
   827  // video is unknown, then it should be mentioned just once with ",,,,,,,,,," in
   828  // place of `LABEL, [INSTANCE_ID],TIMESTAMP,BOUNDING_BOX`. Sample top level CSV
   829  // file: TRAIN,gs://folder/train_videos.csv TEST,gs://folder/test_videos.csv
   830  // UNASSIGNED,gs://folder/other_videos.csv Seven sample rows of a CSV file for
   831  // a particular ML_USE:
   832  // gs://folder/video1.avi,car,1,12.10,0.8,0.8,0.9,0.8,0.9,0.9,0.8,0.9
   833  // gs://folder/video1.avi,car,1,12.90,0.4,0.8,0.5,0.8,0.5,0.9,0.4,0.9
   834  // gs://folder/video1.avi,car,2,12.10,.4,.2,.5,.2,.5,.3,.4,.3
   835  // gs://folder/video1.avi,car,2,12.90,.8,.2,,,.9,.3,,
   836  // gs://folder/video1.avi,bike,,12.50,.45,.45,,,.55,.55,,
   837  // gs://folder/video2.avi,car,1,0,.1,.9,,,.9,.1,,
   838  // gs://folder/video2.avi,,,,,,,,,,, </section> </div> <h4>AutoML Natural
   839  // Language</h4> <div class="ds-selector-tabs"><section><h5>Entity
   840  // Extraction</h5> See [Preparing your training
   841  // data](/natural-language/automl/entity-analysis/docs/prepare) for more
   842  // information. One or more CSV file(s) with each line in the following format:
   843  // ML_USE,GCS_FILE_PATH * `ML_USE` - Identifies the data set that the current
   844  // row (file) applies to. This value can be one of the following: * `TRAIN` -
   845  // Rows in this file are used to train the model. * `TEST` - Rows in this file
   846  // are used to test the model during training. * `UNASSIGNED` - Rows in this
   847  // file are not categorized. They are Automatically divided into train and test
   848  // data. 80% for training and 20% for testing.. - `GCS_FILE_PATH` - a
   849  // Identifies JSON Lines (.JSONL) file stored in Google Cloud Storage that
   850  // contains in-line text in-line as documents for model training. After the
   851  // training data set has been determined from the `TRAIN` and `UNASSIGNED` CSV
   852  // files, the training data is divided into train and validation data sets. 70%
   853  // for training and 30% for validation. For example:
   854  // TRAIN,gs://folder/file1.jsonl VALIDATE,gs://folder/file2.jsonl
   855  // TEST,gs://folder/file3.jsonl **In-line JSONL files** In-line .JSONL files
   856  // contain, per line, a JSON document that wraps a
   857  // [`text_snippet`][google.cloud.automl.v1.TextSnippet] field followed by one
   858  // or more [`annotations`][google.cloud.automl.v1.AnnotationPayload] fields,
   859  // which have `display_name` and `text_extraction` fields to describe the
   860  // entity from the text snippet. Multiple JSON documents can be separated using
   861  // line breaks (\n). The supplied text must be annotated exhaustively. For
   862  // example, if you include the text "horse", but do not label it as "animal",
   863  // then "horse" is assumed to not be an "animal". Any given text snippet
   864  // content must have 30,000 characters or less, and also be UTF-8 NFC encoded.
   865  // ASCII is accepted as it is UTF-8 NFC encoded. For example: { "text_snippet":
   866  // { "content": "dog car cat" }, "annotations": [ { "display_name": "animal",
   867  // "text_extraction": { "text_segment": {"start_offset": 0, "end_offset": 2} }
   868  // }, { "display_name": "vehicle", "text_extraction": { "text_segment":
   869  // {"start_offset": 4, "end_offset": 6} } }, { "display_name": "animal",
   870  // "text_extraction": { "text_segment": {"start_offset": 8, "end_offset": 10} }
   871  // } ] }\n { "text_snippet": { "content": "This dog is good." }, "annotations":
   872  // [ { "display_name": "animal", "text_extraction": { "text_segment":
   873  // {"start_offset": 5, "end_offset": 7} } } ] } **JSONL files that reference
   874  // documents** .JSONL files contain, per line, a JSON document that wraps a
   875  // `input_config` that contains the path to a source document. Multiple JSON
   876  // documents can be separated using line breaks (\n). Supported document
   877  // extensions: .PDF, .TIF, .TIFF For example: { "document": { "input_config": {
   878  // "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n {
   879  // "document": { "input_config": { "gcs_source": { "input_uris": [
   880  // "gs://folder/document2.tif" ] } } } } **In-line JSONL files with document
   881  // layout information** **Note:** You can only annotate documents using the UI.
   882  // The format described below applies to annotated documents exported using the
   883  // UI or `exportData`. In-line .JSONL files for documents contain, per line, a
   884  // JSON document that wraps a `document` field that provides the textual
   885  // content of the document and the layout information. For example: {
   886  // "document": { "document_text": { "content": "dog car cat" } "layout": [ {
   887  // "text_segment": { "start_offset": 0, "end_offset": 11, }, "page_number": 1,
   888  // "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1,
   889  // "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ], },
   890  // "text_segment_type": TOKEN, } ], "document_dimensions": { "width": 8.27,
   891  // "height": 11.69, "unit": INCH, } "page_count": 3, }, "annotations": [ {
   892  // "display_name": "animal", "text_extraction": { "text_segment":
   893  // {"start_offset": 0, "end_offset": 3} } }, { "display_name": "vehicle",
   894  // "text_extraction": { "text_segment": {"start_offset": 4, "end_offset": 7} }
   895  // }, { "display_name": "animal", "text_extraction": { "text_segment":
   896  // {"start_offset": 8, "end_offset": 11} } }, ],
   897  // </section><section><h5>Classification</h5> See [Preparing your training
   898  // data](https://cloud.google.com/natural-language/automl/docs/prepare) for
   899  // more information. One or more CSV file(s) with each line in the following
   900  // format: ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),LABEL,LABEL,... * `ML_USE` -
   901  // Identifies the data set that the current row (file) applies to. This value
   902  // can be one of the following: * `TRAIN` - Rows in this file are used to train
   903  // the model. * `TEST` - Rows in this file are used to test the model during
   904  // training. * `UNASSIGNED` - Rows in this file are not categorized. They are
   905  // Automatically divided into train and test data. 80% for training and 20% for
   906  // testing. - `TEXT_SNIPPET` and `GCS_FILE_PATH` are distinguished by a
   907  // pattern. If the column content is a valid Google Cloud Storage file path,
   908  // that is, prefixed by "gs://", it is treated as a `GCS_FILE_PATH`. Otherwise,
   909  // if the content is enclosed in double quotes (""), it is treated as a
   910  // `TEXT_SNIPPET`. For `GCS_FILE_PATH`, the path must lead to a file with
   911  // supported extension and UTF-8 encoding, for example,
   912  // "gs://folder/content.txt" AutoML imports the file content as a text snippet.
   913  // For `TEXT_SNIPPET`, AutoML imports the column content excluding quotes. In
   914  // both cases, size of the content must be 10MB or less in size. For zip files,
   915  // the size of each file inside the zip must be 10MB or less in size. For the
   916  // `MULTICLASS` classification type, at most one `LABEL` is allowed. The
   917  // `ML_USE` and `LABEL` columns are optional. Supported file extensions: .TXT,
   918  // .PDF, .TIF, .TIFF, .ZIP A maximum of 100 unique labels are allowed per CSV
   919  // row. Sample rows: TRAIN,"They have bad food and very
   920  // rude",RudeService,BadFood gs://folder/content.txt,SlowService
   921  // TEST,gs://folder/document.pdf VALIDATE,gs://folder/text_files.zip,BadFood
   922  // </section><section><h5>Sentiment Analysis</h5> See [Preparing your training
   923  // data](https://cloud.google.com/natural-language/automl/docs/prepare) for
   924  // more information. CSV file(s) with each line in format: ML_USE,(TEXT_SNIPPET
   925  // | GCS_FILE_PATH),SENTIMENT * `ML_USE` - Identifies the data set that the
   926  // current row (file) applies to. This value can be one of the following: *
   927  // `TRAIN` - Rows in this file are used to train the model. * `TEST` - Rows in
   928  // this file are used to test the model during training. * `UNASSIGNED` - Rows
   929  // in this file are not categorized. They are Automatically divided into train
   930  // and test data. 80% for training and 20% for testing. - `TEXT_SNIPPET` and
   931  // `GCS_FILE_PATH` are distinguished by a pattern. If the column content is a
   932  // valid Google Cloud Storage file path, that is, prefixed by "gs://", it is
   933  // treated as a `GCS_FILE_PATH`. Otherwise, if the content is enclosed in
   934  // double quotes (""), it is treated as a `TEXT_SNIPPET`. For `GCS_FILE_PATH`,
   935  // the path must lead to a file with supported extension and UTF-8 encoding,
   936  // for example, "gs://folder/content.txt" AutoML imports the file content as a
   937  // text snippet. For `TEXT_SNIPPET`, AutoML imports the column content
   938  // excluding quotes. In both cases, size of the content must be 128kB or less
   939  // in size. For zip files, the size of each file inside the zip must be 128kB
   940  // or less in size. The `ML_USE` and `SENTIMENT` columns are optional.
   941  // Supported file extensions: .TXT, .PDF, .TIF, .TIFF, .ZIP - `SENTIMENT` - An
   942  // integer between 0 and Dataset.text_sentiment_dataset_metadata.sentiment_max
   943  // (inclusive). Describes the ordinal of the sentiment - higher value means a
   944  // more positive sentiment. All the values are completely relative, i.e.
   945  // neither 0 needs to mean a negative or neutral sentiment nor sentiment_max
   946  // needs to mean a positive one - it is just required that 0 is the least
   947  // positive sentiment in the data, and sentiment_max is the most positive one.
   948  // The SENTIMENT shouldn't be confused with "score" or "magnitude" from the
   949  // previous Natural Language Sentiment Analysis API. All SENTIMENT values
   950  // between 0 and sentiment_max must be represented in the imported data. On
   951  // prediction the same 0 to sentiment_max range will be used. The difference
   952  // between neighboring sentiment values needs not to be uniform, e.g. 1 and 2
   953  // may be similar whereas the difference between 2 and 3 may be large. Sample
   954  // rows: TRAIN,"@freewrytin this is way too good for your product",2
   955  // gs://folder/content.txt,3 TEST,gs://folder/document.pdf
   956  // VALIDATE,gs://folder/text_files.zip,2 </section> </div> <h4>AutoML
   957  // Tables</h4><div class="ui-datasection-main"><section class="selected"> See
   958  // [Preparing your training
   959  // data](https://cloud.google.com/automl-tables/docs/prepare) for more
   960  // information. You can use either
   961  // [gcs_source][google.cloud.automl.v1.InputConfig.gcs_source] or
   962  // [bigquery_source][google.cloud.automl.v1.InputConfig.bigquery_source]. All
   963  // input is concatenated into a single
   964  // [primary_table_spec_id][google.cloud.automl.v1.TablesDatasetMetadata.primary_table_spec_id]
   965  // **For gcs_source:** CSV file(s), where the first row of the first file is
   966  // the header, containing unique column names. If the first row of a subsequent
   967  // file is the same as the header, then it is also treated as a header. All
   968  // other rows contain values for the corresponding columns. Each .CSV file by
   969  // itself must be 10GB or smaller, and their total size must be 100GB or
   970  // smaller. First three sample rows of a CSV file: <pre> "Id","First
   971  // Name","Last Name","Dob","Addresses"
   972  // "1","John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
   973  // "2","Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
   974  // </pre> **For bigquery_source:** An URI of a BigQuery table. The user data
   975  // size of the BigQuery table must be 100GB or smaller. An imported table must
   976  // have between 2 and 1,000 columns, inclusive, and between 1000 and
   977  // 100,000,000 rows, inclusive. There are at most 5 import data running in
   978  // parallel. </section> </div> **Input field definitions:** `ML_USE` : ("TRAIN"
   979  // | "VALIDATE" | "TEST" | "UNASSIGNED") Describes how the given example (file)
   980  // should be used for model training. "UNASSIGNED" can be used when user has no
   981  // preference. `GCS_FILE_PATH` : The path to a file on Google Cloud Storage.
   982  // For example, "gs://folder/image1.png". `LABEL` : A display name of an object
   983  // on an image, video etc., e.g. "dog". Must be up to 32 characters long and
   984  // can consist only of ASCII Latin letters A-Z and a-z, underscores(_), and
   985  // ASCII digits 0-9. For each label an AnnotationSpec is created which
   986  // display_name becomes the label; AnnotationSpecs are given back in
   987  // predictions. `INSTANCE_ID` : A positive integer that identifies a specific
   988  // instance of a labeled entity on an example. Used e.g. to track two cars on a
   989  // video while being able to tell apart which one is which. `BOUNDING_BOX` :
   990  // (`VERTEX,VERTEX,VERTEX,VERTEX` | `VERTEX,,,VERTEX,,`) A rectangle parallel
   991  // to the frame of the example (image, video). If 4 vertices are given they are
   992  // connected by edges in the order provided, if 2 are given they are recognized
   993  // as diagonally opposite vertices of the rectangle. `VERTEX` :
   994  // (`COORDINATE,COORDINATE`) First coordinate is horizontal (x), the second is
   995  // vertical (y). `COORDINATE` : A float in 0 to 1 range, relative to total
   996  // length of image or video in given dimension. For fractions the leading
   997  // non-decimal 0 can be omitted (i.e. 0.3 = .3). Point 0,0 is in top left.
   998  // `TIME_SEGMENT_START` : (`TIME_OFFSET`) Expresses a beginning, inclusive, of
   999  // a time segment within an example that has a time dimension (e.g. video).
  1000  // `TIME_SEGMENT_END` : (`TIME_OFFSET`) Expresses an end, exclusive, of a time
  1001  // segment within n example that has a time dimension (e.g. video).
  1002  // `TIME_OFFSET` : A number of seconds as measured from the start of an example
  1003  // (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is
  1004  // allowed, and it means the end of the example. `TEXT_SNIPPET` : The content
  1005  // of a text snippet, UTF-8 encoded, enclosed within double quotes ("").
  1006  // `DOCUMENT` : A field that provides the textual content with document and the
  1007  // layout information. **Errors:** If any of the provided CSV files can't be
  1008  // parsed or if more than certain percent of CSV rows cannot be processed then
  1009  // the operation fails and nothing is imported. Regardless of overall success
  1010  // or failure the per-row failures, up to a certain count cap, is listed in
  1011  // Operation.metadata.partial_failures.
  1012  //
  1013  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1014  type InputConfig = src.InputConfig
  1015  type InputConfig_GcsSource = src.InputConfig_GcsSource
  1016  
  1017  // Request message for
  1018  // [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets].
  1019  //
  1020  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1021  type ListDatasetsRequest = src.ListDatasetsRequest
  1022  
  1023  // Response message for
  1024  // [AutoMl.ListDatasets][google.cloud.automl.v1.AutoMl.ListDatasets].
  1025  //
  1026  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1027  type ListDatasetsResponse = src.ListDatasetsResponse
  1028  
  1029  // Request message for
  1030  // [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations].
  1031  //
  1032  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1033  type ListModelEvaluationsRequest = src.ListModelEvaluationsRequest
  1034  
  1035  // Response message for
  1036  // [AutoMl.ListModelEvaluations][google.cloud.automl.v1.AutoMl.ListModelEvaluations].
  1037  //
  1038  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1039  type ListModelEvaluationsResponse = src.ListModelEvaluationsResponse
  1040  
  1041  // Request message for
  1042  // [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels].
  1043  //
  1044  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1045  type ListModelsRequest = src.ListModelsRequest
  1046  
  1047  // Response message for
  1048  // [AutoMl.ListModels][google.cloud.automl.v1.AutoMl.ListModels].
  1049  //
  1050  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1051  type ListModelsResponse = src.ListModelsResponse
  1052  
  1053  // API proto representing a trained machine learning model.
  1054  //
  1055  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1056  type Model = src.Model
  1057  
  1058  // Evaluation results of a model.
  1059  //
  1060  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1061  type ModelEvaluation = src.ModelEvaluation
  1062  type ModelEvaluation_ClassificationEvaluationMetrics = src.ModelEvaluation_ClassificationEvaluationMetrics
  1063  type ModelEvaluation_ImageObjectDetectionEvaluationMetrics = src.ModelEvaluation_ImageObjectDetectionEvaluationMetrics
  1064  type ModelEvaluation_TextExtractionEvaluationMetrics = src.ModelEvaluation_TextExtractionEvaluationMetrics
  1065  type ModelEvaluation_TextSentimentEvaluationMetrics = src.ModelEvaluation_TextSentimentEvaluationMetrics
  1066  type ModelEvaluation_TranslationEvaluationMetrics = src.ModelEvaluation_TranslationEvaluationMetrics
  1067  
  1068  // Output configuration for ModelExport Action.
  1069  //
  1070  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1071  type ModelExportOutputConfig = src.ModelExportOutputConfig
  1072  type ModelExportOutputConfig_GcsDestination = src.ModelExportOutputConfig_GcsDestination
  1073  
  1074  // Deployment state of the model.
  1075  //
  1076  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1077  type Model_DeploymentState = src.Model_DeploymentState
  1078  type Model_ImageClassificationModelMetadata = src.Model_ImageClassificationModelMetadata
  1079  type Model_ImageObjectDetectionModelMetadata = src.Model_ImageObjectDetectionModelMetadata
  1080  type Model_TextClassificationModelMetadata = src.Model_TextClassificationModelMetadata
  1081  type Model_TextExtractionModelMetadata = src.Model_TextExtractionModelMetadata
  1082  type Model_TextSentimentModelMetadata = src.Model_TextSentimentModelMetadata
  1083  type Model_TranslationModelMetadata = src.Model_TranslationModelMetadata
  1084  
  1085  // A vertex represents a 2D point in the image. The normalized vertex
  1086  // coordinates are between 0 to 1 fractions relative to the original plane
  1087  // (image, video). E.g. if the plane (e.g. whole image) would have size 10 x 20
  1088  // then a point with normalized coordinates (0.1, 0.3) would be at the position
  1089  // (1, 6) on that plane.
  1090  //
  1091  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1092  type NormalizedVertex = src.NormalizedVertex
  1093  
  1094  // Metadata used across all long running operations returned by AutoML API.
  1095  //
  1096  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1097  type OperationMetadata = src.OperationMetadata
  1098  type OperationMetadata_BatchPredictDetails = src.OperationMetadata_BatchPredictDetails
  1099  type OperationMetadata_CreateDatasetDetails = src.OperationMetadata_CreateDatasetDetails
  1100  type OperationMetadata_CreateModelDetails = src.OperationMetadata_CreateModelDetails
  1101  type OperationMetadata_DeleteDetails = src.OperationMetadata_DeleteDetails
  1102  type OperationMetadata_DeployModelDetails = src.OperationMetadata_DeployModelDetails
  1103  type OperationMetadata_ExportDataDetails = src.OperationMetadata_ExportDataDetails
  1104  type OperationMetadata_ExportModelDetails = src.OperationMetadata_ExportModelDetails
  1105  type OperationMetadata_ImportDataDetails = src.OperationMetadata_ImportDataDetails
  1106  type OperationMetadata_UndeployModelDetails = src.OperationMetadata_UndeployModelDetails
  1107  
  1108  // - For Translation: CSV file `translation.csv`, with each line in format:
  1109  // ML_USE,GCS_FILE_PATH GCS_FILE_PATH leads to a .TSV file which describes
  1110  // examples that have given ML_USE, using the following row format per line:
  1111  // TEXT_SNIPPET (in source language) \t TEXT_SNIPPET (in target language) - For
  1112  // Tables: Output depends on whether the dataset was imported from Google Cloud
  1113  // Storage or BigQuery. Google Cloud Storage case:
  1114  // [gcs_destination][google.cloud.automl.v1p1beta.OutputConfig.gcs_destination]
  1115  // must be set. Exported are CSV file(s) `tables_1.csv`,
  1116  // `tables_2.csv`,...,`tables_N.csv` with each having as header line the
  1117  // table's column names, and all other lines contain values for the header
  1118  // columns. BigQuery case:
  1119  // [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination]
  1120  // pointing to a BigQuery project must be set. In the given project a new
  1121  // dataset will be created with name
  1122  // `export_data_<automl-dataset-display-name>_<timestamp-of-export-call>` where
  1123  // <automl-dataset-display-name> will be made BigQuery-dataset-name compatible
  1124  // (e.g. most special characters will become underscores), and timestamp will
  1125  // be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In that dataset a
  1126  // new table called `primary_table` will be created, and filled with precisely
  1127  // the same data as this obtained on import.
  1128  //
  1129  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1130  type OutputConfig = src.OutputConfig
  1131  type OutputConfig_GcsDestination = src.OutputConfig_GcsDestination
  1132  
  1133  // Request message for
  1134  // [PredictionService.Predict][google.cloud.automl.v1.PredictionService.Predict].
  1135  //
  1136  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1137  type PredictRequest = src.PredictRequest
  1138  
  1139  // Response message for
  1140  // [PredictionService.Predict][google.cloud.automl.v1.PredictionService.Predict].
  1141  //
  1142  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1143  type PredictResponse = src.PredictResponse
  1144  
  1145  // PredictionServiceClient is the client API for PredictionService service.
  1146  // For semantics around ctx use and closing/ending streaming RPCs, please refer
  1147  // to https://godoc.org/google.golang.org/grpc#ClientConn.NewStream.
  1148  //
  1149  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1150  type PredictionServiceClient = src.PredictionServiceClient
  1151  
  1152  // PredictionServiceServer is the server API for PredictionService service.
  1153  //
  1154  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1155  type PredictionServiceServer = src.PredictionServiceServer
  1156  
  1157  // Dataset metadata for classification.
  1158  //
  1159  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1160  type TextClassificationDatasetMetadata = src.TextClassificationDatasetMetadata
  1161  
  1162  // Model metadata that is specific to text classification.
  1163  //
  1164  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1165  type TextClassificationModelMetadata = src.TextClassificationModelMetadata
  1166  
  1167  // Annotation for identifying spans of text.
  1168  //
  1169  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1170  type TextExtractionAnnotation = src.TextExtractionAnnotation
  1171  type TextExtractionAnnotation_TextSegment = src.TextExtractionAnnotation_TextSegment
  1172  
  1173  // Dataset metadata that is specific to text extraction
  1174  //
  1175  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1176  type TextExtractionDatasetMetadata = src.TextExtractionDatasetMetadata
  1177  
  1178  // Model evaluation metrics for text extraction problems.
  1179  //
  1180  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1181  type TextExtractionEvaluationMetrics = src.TextExtractionEvaluationMetrics
  1182  
  1183  // Metrics for a single confidence threshold.
  1184  //
  1185  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1186  type TextExtractionEvaluationMetrics_ConfidenceMetricsEntry = src.TextExtractionEvaluationMetrics_ConfidenceMetricsEntry
  1187  
  1188  // Model metadata that is specific to text extraction.
  1189  //
  1190  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1191  type TextExtractionModelMetadata = src.TextExtractionModelMetadata
  1192  
  1193  // A contiguous part of a text (string), assuming it has an UTF-8 NFC
  1194  // encoding.
  1195  //
  1196  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1197  type TextSegment = src.TextSegment
  1198  
  1199  // Contains annotation details specific to text sentiment.
  1200  //
  1201  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1202  type TextSentimentAnnotation = src.TextSentimentAnnotation
  1203  
  1204  // Dataset metadata for text sentiment.
  1205  //
  1206  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1207  type TextSentimentDatasetMetadata = src.TextSentimentDatasetMetadata
  1208  
  1209  // Model evaluation metrics for text sentiment problems.
  1210  //
  1211  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1212  type TextSentimentEvaluationMetrics = src.TextSentimentEvaluationMetrics
  1213  
  1214  // Model metadata that is specific to text sentiment.
  1215  //
  1216  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1217  type TextSentimentModelMetadata = src.TextSentimentModelMetadata
  1218  
  1219  // A representation of a text snippet.
  1220  //
  1221  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1222  type TextSnippet = src.TextSnippet
  1223  
  1224  // Annotation details specific to translation.
  1225  //
  1226  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1227  type TranslationAnnotation = src.TranslationAnnotation
  1228  
  1229  // Dataset metadata that is specific to translation.
  1230  //
  1231  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1232  type TranslationDatasetMetadata = src.TranslationDatasetMetadata
  1233  
  1234  // Evaluation metrics for the dataset.
  1235  //
  1236  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1237  type TranslationEvaluationMetrics = src.TranslationEvaluationMetrics
  1238  
  1239  // Model metadata that is specific to translation.
  1240  //
  1241  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1242  type TranslationModelMetadata = src.TranslationModelMetadata
  1243  
  1244  // Details of UndeployModel operation.
  1245  //
  1246  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1247  type UndeployModelOperationMetadata = src.UndeployModelOperationMetadata
  1248  
  1249  // Request message for
  1250  // [AutoMl.UndeployModel][google.cloud.automl.v1.AutoMl.UndeployModel].
  1251  //
  1252  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1253  type UndeployModelRequest = src.UndeployModelRequest
  1254  
  1255  // UnimplementedAutoMlServer can be embedded to have forward compatible
  1256  // implementations.
  1257  //
  1258  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1259  type UnimplementedAutoMlServer = src.UnimplementedAutoMlServer
  1260  
  1261  // UnimplementedPredictionServiceServer can be embedded to have forward
  1262  // compatible implementations.
  1263  //
  1264  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1265  type UnimplementedPredictionServiceServer = src.UnimplementedPredictionServiceServer
  1266  
  1267  // Request message for
  1268  // [AutoMl.UpdateDataset][google.cloud.automl.v1.AutoMl.UpdateDataset]
  1269  //
  1270  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1271  type UpdateDatasetRequest = src.UpdateDatasetRequest
  1272  
  1273  // Request message for
  1274  // [AutoMl.UpdateModel][google.cloud.automl.v1.AutoMl.UpdateModel]
  1275  //
  1276  // Deprecated: Please use types in: cloud.google.com/go/automl/apiv1/automlpb
  1277  type UpdateModelRequest = src.UpdateModelRequest
  1278  
  1279  // Deprecated: Please use funcs in: cloud.google.com/go/automl/apiv1/automlpb
  1280  func NewAutoMlClient(cc grpc.ClientConnInterface) AutoMlClient { return src.NewAutoMlClient(cc) }
  1281  
  1282  // Deprecated: Please use funcs in: cloud.google.com/go/automl/apiv1/automlpb
  1283  func NewPredictionServiceClient(cc grpc.ClientConnInterface) PredictionServiceClient {
  1284  	return src.NewPredictionServiceClient(cc)
  1285  }
  1286  
  1287  // Deprecated: Please use funcs in: cloud.google.com/go/automl/apiv1/automlpb
  1288  func RegisterAutoMlServer(s *grpc.Server, srv AutoMlServer) { src.RegisterAutoMlServer(s, srv) }
  1289  
  1290  // Deprecated: Please use funcs in: cloud.google.com/go/automl/apiv1/automlpb
  1291  func RegisterPredictionServiceServer(s *grpc.Server, srv PredictionServiceServer) {
  1292  	src.RegisterPredictionServiceServer(s, srv)
  1293  }
  1294  

View as plain text