...

Source file src/golang.org/x/tools/go/ssa/ssa.go

Documentation: golang.org/x/tools/go/ssa

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // This package defines a high-level intermediate representation for
     8  // Go programs using static single-assignment (SSA) form.
     9  
    10  import (
    11  	"fmt"
    12  	"go/ast"
    13  	"go/constant"
    14  	"go/token"
    15  	"go/types"
    16  	"sync"
    17  
    18  	"golang.org/x/tools/go/types/typeutil"
    19  	"golang.org/x/tools/internal/typeparams"
    20  )
    21  
    22  // A Program is a partial or complete Go program converted to SSA form.
    23  type Program struct {
    24  	Fset       *token.FileSet              // position information for the files of this Program
    25  	imported   map[string]*Package         // all importable Packages, keyed by import path
    26  	packages   map[*types.Package]*Package // all created Packages
    27  	mode       BuilderMode                 // set of mode bits for SSA construction
    28  	MethodSets typeutil.MethodSetCache     // cache of type-checker's method-sets
    29  
    30  	canon *canonizer     // type canonicalization map
    31  	ctxt  *types.Context // cache for type checking instantiations
    32  
    33  	methodsMu  sync.Mutex
    34  	methodSets typeutil.Map // maps type to its concrete *methodSet
    35  
    36  	// memoization of whether a type refers to type parameters
    37  	hasParamsMu sync.Mutex
    38  	hasParams   typeparams.Free
    39  
    40  	runtimeTypesMu sync.Mutex
    41  	runtimeTypes   typeutil.Map // set of runtime types (from MakeInterface)
    42  
    43  	// objectMethods is a memoization of objectMethod
    44  	// to avoid creation of duplicate methods from type information.
    45  	objectMethodsMu sync.Mutex
    46  	objectMethods   map[*types.Func]*Function
    47  }
    48  
    49  // A Package is a single analyzed Go package containing Members for
    50  // all package-level functions, variables, constants and types it
    51  // declares.  These may be accessed directly via Members, or via the
    52  // type-specific accessor methods Func, Type, Var and Const.
    53  //
    54  // Members also contains entries for "init" (the synthetic package
    55  // initializer) and "init#%d", the nth declared init function,
    56  // and unspecified other things too.
    57  type Package struct {
    58  	Prog    *Program                // the owning program
    59  	Pkg     *types.Package          // the corresponding go/types.Package
    60  	Members map[string]Member       // all package members keyed by name (incl. init and init#%d)
    61  	objects map[types.Object]Member // mapping of package objects to members (incl. methods). Contains *NamedConst, *Global, *Function (values but not types)
    62  	init    *Function               // Func("init"); the package's init function
    63  	debug   bool                    // include full debug info in this package
    64  	syntax  bool                    // package was loaded from syntax
    65  
    66  	// The following fields are set transiently, then cleared
    67  	// after building.
    68  	buildOnce   sync.Once           // ensures package building occurs once
    69  	ninit       int32               // number of init functions
    70  	info        *types.Info         // package type information
    71  	files       []*ast.File         // package ASTs
    72  	created     creator             // members created as a result of building this package (includes declared functions, wrappers)
    73  	initVersion map[ast.Expr]string // goversion to use for each global var init expr
    74  }
    75  
    76  // A Member is a member of a Go package, implemented by *NamedConst,
    77  // *Global, *Function, or *Type; they are created by package-level
    78  // const, var, func and type declarations respectively.
    79  type Member interface {
    80  	Name() string                    // declared name of the package member
    81  	String() string                  // package-qualified name of the package member
    82  	RelString(*types.Package) string // like String, but relative refs are unqualified
    83  	Object() types.Object            // typechecker's object for this member, if any
    84  	Pos() token.Pos                  // position of member's declaration, if known
    85  	Type() types.Type                // type of the package member
    86  	Token() token.Token              // token.{VAR,FUNC,CONST,TYPE}
    87  	Package() *Package               // the containing package
    88  }
    89  
    90  // A Type is a Member of a Package representing a package-level named type.
    91  type Type struct {
    92  	object *types.TypeName
    93  	pkg    *Package
    94  }
    95  
    96  // A NamedConst is a Member of a Package representing a package-level
    97  // named constant.
    98  //
    99  // Pos() returns the position of the declaring ast.ValueSpec.Names[*]
   100  // identifier.
   101  //
   102  // NB: a NamedConst is not a Value; it contains a constant Value, which
   103  // it augments with the name and position of its 'const' declaration.
   104  type NamedConst struct {
   105  	object *types.Const
   106  	Value  *Const
   107  	pkg    *Package
   108  }
   109  
   110  // A Value is an SSA value that can be referenced by an instruction.
   111  type Value interface {
   112  	// Name returns the name of this value, and determines how
   113  	// this Value appears when used as an operand of an
   114  	// Instruction.
   115  	//
   116  	// This is the same as the source name for Parameters,
   117  	// Builtins, Functions, FreeVars, Globals.
   118  	// For constants, it is a representation of the constant's value
   119  	// and type.  For all other Values this is the name of the
   120  	// virtual register defined by the instruction.
   121  	//
   122  	// The name of an SSA Value is not semantically significant,
   123  	// and may not even be unique within a function.
   124  	Name() string
   125  
   126  	// If this value is an Instruction, String returns its
   127  	// disassembled form; otherwise it returns unspecified
   128  	// human-readable information about the Value, such as its
   129  	// kind, name and type.
   130  	String() string
   131  
   132  	// Type returns the type of this value.  Many instructions
   133  	// (e.g. IndexAddr) change their behaviour depending on the
   134  	// types of their operands.
   135  	Type() types.Type
   136  
   137  	// Parent returns the function to which this Value belongs.
   138  	// It returns nil for named Functions, Builtin, Const and Global.
   139  	Parent() *Function
   140  
   141  	// Referrers returns the list of instructions that have this
   142  	// value as one of their operands; it may contain duplicates
   143  	// if an instruction has a repeated operand.
   144  	//
   145  	// Referrers actually returns a pointer through which the
   146  	// caller may perform mutations to the object's state.
   147  	//
   148  	// Referrers is currently only defined if Parent()!=nil,
   149  	// i.e. for the function-local values FreeVar, Parameter,
   150  	// Functions (iff anonymous) and all value-defining instructions.
   151  	// It returns nil for named Functions, Builtin, Const and Global.
   152  	//
   153  	// Instruction.Operands contains the inverse of this relation.
   154  	Referrers() *[]Instruction
   155  
   156  	// Pos returns the location of the AST token most closely
   157  	// associated with the operation that gave rise to this value,
   158  	// or token.NoPos if it was not explicit in the source.
   159  	//
   160  	// For each ast.Node type, a particular token is designated as
   161  	// the closest location for the expression, e.g. the Lparen
   162  	// for an *ast.CallExpr.  This permits a compact but
   163  	// approximate mapping from Values to source positions for use
   164  	// in diagnostic messages, for example.
   165  	//
   166  	// (Do not use this position to determine which Value
   167  	// corresponds to an ast.Expr; use Function.ValueForExpr
   168  	// instead.  NB: it requires that the function was built with
   169  	// debug information.)
   170  	Pos() token.Pos
   171  }
   172  
   173  // An Instruction is an SSA instruction that computes a new Value or
   174  // has some effect.
   175  //
   176  // An Instruction that defines a value (e.g. BinOp) also implements
   177  // the Value interface; an Instruction that only has an effect (e.g. Store)
   178  // does not.
   179  type Instruction interface {
   180  	// String returns the disassembled form of this value.
   181  	//
   182  	// Examples of Instructions that are Values:
   183  	//       "x + y"     (BinOp)
   184  	//       "len([])"   (Call)
   185  	// Note that the name of the Value is not printed.
   186  	//
   187  	// Examples of Instructions that are not Values:
   188  	//       "return x"  (Return)
   189  	//       "*y = x"    (Store)
   190  	//
   191  	// (The separation Value.Name() from Value.String() is useful
   192  	// for some analyses which distinguish the operation from the
   193  	// value it defines, e.g., 'y = local int' is both an allocation
   194  	// of memory 'local int' and a definition of a pointer y.)
   195  	String() string
   196  
   197  	// Parent returns the function to which this instruction
   198  	// belongs.
   199  	Parent() *Function
   200  
   201  	// Block returns the basic block to which this instruction
   202  	// belongs.
   203  	Block() *BasicBlock
   204  
   205  	// setBlock sets the basic block to which this instruction belongs.
   206  	setBlock(*BasicBlock)
   207  
   208  	// Operands returns the operands of this instruction: the
   209  	// set of Values it references.
   210  	//
   211  	// Specifically, it appends their addresses to rands, a
   212  	// user-provided slice, and returns the resulting slice,
   213  	// permitting avoidance of memory allocation.
   214  	//
   215  	// The operands are appended in undefined order, but the order
   216  	// is consistent for a given Instruction; the addresses are
   217  	// always non-nil but may point to a nil Value.  Clients may
   218  	// store through the pointers, e.g. to effect a value
   219  	// renaming.
   220  	//
   221  	// Value.Referrers is a subset of the inverse of this
   222  	// relation.  (Referrers are not tracked for all types of
   223  	// Values.)
   224  	Operands(rands []*Value) []*Value
   225  
   226  	// Pos returns the location of the AST token most closely
   227  	// associated with the operation that gave rise to this
   228  	// instruction, or token.NoPos if it was not explicit in the
   229  	// source.
   230  	//
   231  	// For each ast.Node type, a particular token is designated as
   232  	// the closest location for the expression, e.g. the Go token
   233  	// for an *ast.GoStmt.  This permits a compact but approximate
   234  	// mapping from Instructions to source positions for use in
   235  	// diagnostic messages, for example.
   236  	//
   237  	// (Do not use this position to determine which Instruction
   238  	// corresponds to an ast.Expr; see the notes for Value.Pos.
   239  	// This position may be used to determine which non-Value
   240  	// Instruction corresponds to some ast.Stmts, but not all: If
   241  	// and Jump instructions have no Pos(), for example.)
   242  	Pos() token.Pos
   243  }
   244  
   245  // A Node is a node in the SSA value graph.  Every concrete type that
   246  // implements Node is also either a Value, an Instruction, or both.
   247  //
   248  // Node contains the methods common to Value and Instruction, plus the
   249  // Operands and Referrers methods generalized to return nil for
   250  // non-Instructions and non-Values, respectively.
   251  //
   252  // Node is provided to simplify SSA graph algorithms.  Clients should
   253  // use the more specific and informative Value or Instruction
   254  // interfaces where appropriate.
   255  type Node interface {
   256  	// Common methods:
   257  	String() string
   258  	Pos() token.Pos
   259  	Parent() *Function
   260  
   261  	// Partial methods:
   262  	Operands(rands []*Value) []*Value // nil for non-Instructions
   263  	Referrers() *[]Instruction        // nil for non-Values
   264  }
   265  
   266  // Function represents the parameters, results, and code of a function
   267  // or method.
   268  //
   269  // If Blocks is nil, this indicates an external function for which no
   270  // Go source code is available.  In this case, FreeVars, Locals, and
   271  // Params are nil too.  Clients performing whole-program analysis must
   272  // handle external functions specially.
   273  //
   274  // Blocks contains the function's control-flow graph (CFG).
   275  // Blocks[0] is the function entry point; block order is not otherwise
   276  // semantically significant, though it may affect the readability of
   277  // the disassembly.
   278  // To iterate over the blocks in dominance order, use DomPreorder().
   279  //
   280  // Recover is an optional second entry point to which control resumes
   281  // after a recovered panic.  The Recover block may contain only a return
   282  // statement, preceded by a load of the function's named return
   283  // parameters, if any.
   284  //
   285  // A nested function (Parent()!=nil) that refers to one or more
   286  // lexically enclosing local variables ("free variables") has FreeVars.
   287  // Such functions cannot be called directly but require a
   288  // value created by MakeClosure which, via its Bindings, supplies
   289  // values for these parameters.
   290  //
   291  // If the function is a method (Signature.Recv() != nil) then the first
   292  // element of Params is the receiver parameter.
   293  //
   294  // A Go package may declare many functions called "init".
   295  // For each one, Object().Name() returns "init" but Name() returns
   296  // "init#1", etc, in declaration order.
   297  //
   298  // Pos() returns the declaring ast.FuncLit.Type.Func or the position
   299  // of the ast.FuncDecl.Name, if the function was explicit in the
   300  // source.  Synthetic wrappers, for which Synthetic != "", may share
   301  // the same position as the function they wrap.
   302  // Syntax.Pos() always returns the position of the declaring "func" token.
   303  //
   304  // Type() returns the function's Signature.
   305  //
   306  // A generic function is a function or method that has uninstantiated type
   307  // parameters (TypeParams() != nil). Consider a hypothetical generic
   308  // method, (*Map[K,V]).Get. It may be instantiated with all
   309  // non-parameterized types as (*Map[string,int]).Get or with
   310  // parameterized types as (*Map[string,U]).Get, where U is a type parameter.
   311  // In both instantiations, Origin() refers to the instantiated generic
   312  // method, (*Map[K,V]).Get, TypeParams() refers to the parameters [K,V] of
   313  // the generic method. TypeArgs() refers to [string,U] or [string,int],
   314  // respectively, and is nil in the generic method.
   315  type Function struct {
   316  	name      string
   317  	object    *types.Func // symbol for declared function (nil for FuncLit or synthetic init)
   318  	method    *selection  // info about provenance of synthetic methods; thunk => non-nil
   319  	Signature *types.Signature
   320  	pos       token.Pos
   321  
   322  	// source information
   323  	Synthetic string      // provenance of synthetic function; "" for true source functions
   324  	syntax    ast.Node    // *ast.Func{Decl,Lit}, if from syntax (incl. generic instances)
   325  	info      *types.Info // type annotations (iff syntax != nil)
   326  	goversion string      // Go version of syntax (NB: init is special)
   327  
   328  	build  buildFunc // algorithm to build function body (nil => built)
   329  	parent *Function // enclosing function if anon; nil if global
   330  	Pkg    *Package  // enclosing package; nil for shared funcs (wrappers and error.Error)
   331  	Prog   *Program  // enclosing program
   332  
   333  	// These fields are populated only when the function body is built:
   334  
   335  	Params    []*Parameter  // function parameters; for methods, includes receiver
   336  	FreeVars  []*FreeVar    // free variables whose values must be supplied by closure
   337  	Locals    []*Alloc      // frame-allocated variables of this function
   338  	Blocks    []*BasicBlock // basic blocks of the function; nil => external
   339  	Recover   *BasicBlock   // optional; control transfers here after recovered panic
   340  	AnonFuncs []*Function   // anonymous functions directly beneath this one
   341  	referrers []Instruction // referring instructions (iff Parent() != nil)
   342  	anonIdx   int32         // position of a nested function in parent's AnonFuncs. fn.Parent()!=nil => fn.Parent().AnonFunc[fn.anonIdx] == fn.
   343  
   344  	typeparams     *types.TypeParamList // type parameters of this function. typeparams.Len() > 0 => generic or instance of generic function
   345  	typeargs       []types.Type         // type arguments that instantiated typeparams. len(typeargs) > 0 => instance of generic function
   346  	topLevelOrigin *Function            // the origin function if this is an instance of a source function. nil if Parent()!=nil.
   347  	generic        *generic             // instances of this function, if generic
   348  
   349  	// The following fields are cleared after building.
   350  	currentBlock *BasicBlock              // where to emit code
   351  	vars         map[*types.Var]Value     // addresses of local variables
   352  	namedResults []*Alloc                 // tuple of named results
   353  	targets      *targets                 // linked stack of branch targets
   354  	lblocks      map[*types.Label]*lblock // labelled blocks
   355  	subst        *subster                 // type parameter substitutions (if non-nil)
   356  }
   357  
   358  // BasicBlock represents an SSA basic block.
   359  //
   360  // The final element of Instrs is always an explicit transfer of
   361  // control (If, Jump, Return, or Panic).
   362  //
   363  // A block may contain no Instructions only if it is unreachable,
   364  // i.e., Preds is nil.  Empty blocks are typically pruned.
   365  //
   366  // BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
   367  // graph independent of the SSA Value graph: the control-flow graph or
   368  // CFG.  It is illegal for multiple edges to exist between the same
   369  // pair of blocks.
   370  //
   371  // Each BasicBlock is also a node in the dominator tree of the CFG.
   372  // The tree may be navigated using Idom()/Dominees() and queried using
   373  // Dominates().
   374  //
   375  // The order of Preds and Succs is significant (to Phi and If
   376  // instructions, respectively).
   377  type BasicBlock struct {
   378  	Index        int            // index of this block within Parent().Blocks
   379  	Comment      string         // optional label; no semantic significance
   380  	parent       *Function      // parent function
   381  	Instrs       []Instruction  // instructions in order
   382  	Preds, Succs []*BasicBlock  // predecessors and successors
   383  	succs2       [2]*BasicBlock // initial space for Succs
   384  	dom          domInfo        // dominator tree info
   385  	gaps         int            // number of nil Instrs (transient)
   386  	rundefers    int            // number of rundefers (transient)
   387  }
   388  
   389  // Pure values ----------------------------------------
   390  
   391  // A FreeVar represents a free variable of the function to which it
   392  // belongs.
   393  //
   394  // FreeVars are used to implement anonymous functions, whose free
   395  // variables are lexically captured in a closure formed by
   396  // MakeClosure.  The value of such a free var is an Alloc or another
   397  // FreeVar and is considered a potentially escaping heap address, with
   398  // pointer type.
   399  //
   400  // FreeVars are also used to implement bound method closures.  Such a
   401  // free var represents the receiver value and may be of any type that
   402  // has concrete methods.
   403  //
   404  // Pos() returns the position of the value that was captured, which
   405  // belongs to an enclosing function.
   406  type FreeVar struct {
   407  	name      string
   408  	typ       types.Type
   409  	pos       token.Pos
   410  	parent    *Function
   411  	referrers []Instruction
   412  
   413  	// Transiently needed during building.
   414  	outer Value // the Value captured from the enclosing context.
   415  }
   416  
   417  // A Parameter represents an input parameter of a function.
   418  type Parameter struct {
   419  	name      string
   420  	object    *types.Var // non-nil
   421  	typ       types.Type
   422  	parent    *Function
   423  	referrers []Instruction
   424  }
   425  
   426  // A Const represents a value known at build time.
   427  //
   428  // Consts include true constants of boolean, numeric, and string types, as
   429  // defined by the Go spec; these are represented by a non-nil Value field.
   430  //
   431  // Consts also include the "zero" value of any type, of which the nil values
   432  // of various pointer-like types are a special case; these are represented
   433  // by a nil Value field.
   434  //
   435  // Pos() returns token.NoPos.
   436  //
   437  // Example printed forms:
   438  //
   439  //		42:int
   440  //		"hello":untyped string
   441  //		3+4i:MyComplex
   442  //		nil:*int
   443  //		nil:[]string
   444  //		[3]int{}:[3]int
   445  //		struct{x string}{}:struct{x string}
   446  //	    0:interface{int|int64}
   447  //	    nil:interface{bool|int} // no go/constant representation
   448  type Const struct {
   449  	typ   types.Type
   450  	Value constant.Value
   451  }
   452  
   453  // A Global is a named Value holding the address of a package-level
   454  // variable.
   455  //
   456  // Pos() returns the position of the ast.ValueSpec.Names[*]
   457  // identifier.
   458  type Global struct {
   459  	name   string
   460  	object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
   461  	typ    types.Type
   462  	pos    token.Pos
   463  
   464  	Pkg *Package
   465  }
   466  
   467  // A Builtin represents a specific use of a built-in function, e.g. len.
   468  //
   469  // Builtins are immutable values.  Builtins do not have addresses.
   470  // Builtins can only appear in CallCommon.Value.
   471  //
   472  // Name() indicates the function: one of the built-in functions from the
   473  // Go spec (excluding "make" and "new") or one of these ssa-defined
   474  // intrinsics:
   475  //
   476  //	// wrapnilchk returns ptr if non-nil, panics otherwise.
   477  //	// (For use in indirection wrappers.)
   478  //	func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T
   479  //
   480  // Object() returns a *types.Builtin for built-ins defined by the spec,
   481  // nil for others.
   482  //
   483  // Type() returns a *types.Signature representing the effective
   484  // signature of the built-in for this call.
   485  type Builtin struct {
   486  	name string
   487  	sig  *types.Signature
   488  }
   489  
   490  // Value-defining instructions  ----------------------------------------
   491  
   492  // The Alloc instruction reserves space for a variable of the given type,
   493  // zero-initializes it, and yields its address.
   494  //
   495  // Alloc values are always addresses, and have pointer types, so the
   496  // type of the allocated variable is actually
   497  // Type().Underlying().(*types.Pointer).Elem().
   498  //
   499  // If Heap is false, Alloc zero-initializes the same local variable in
   500  // the call frame and returns its address; in this case the Alloc must
   501  // be present in Function.Locals. We call this a "local" alloc.
   502  //
   503  // If Heap is true, Alloc allocates a new zero-initialized variable
   504  // each time the instruction is executed. We call this a "new" alloc.
   505  //
   506  // When Alloc is applied to a channel, map or slice type, it returns
   507  // the address of an uninitialized (nil) reference of that kind; store
   508  // the result of MakeSlice, MakeMap or MakeChan in that location to
   509  // instantiate these types.
   510  //
   511  // Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
   512  // or the ast.CallExpr.Rparen for a call to new() or for a call that
   513  // allocates a varargs slice.
   514  //
   515  // Example printed form:
   516  //
   517  //	t0 = local int
   518  //	t1 = new int
   519  type Alloc struct {
   520  	register
   521  	Comment string
   522  	Heap    bool
   523  	index   int // dense numbering; for lifting
   524  }
   525  
   526  // The Phi instruction represents an SSA φ-node, which combines values
   527  // that differ across incoming control-flow edges and yields a new
   528  // value.  Within a block, all φ-nodes must appear before all non-φ
   529  // nodes.
   530  //
   531  // Pos() returns the position of the && or || for short-circuit
   532  // control-flow joins, or that of the *Alloc for φ-nodes inserted
   533  // during SSA renaming.
   534  //
   535  // Example printed form:
   536  //
   537  //	t2 = phi [0: t0, 1: t1]
   538  type Phi struct {
   539  	register
   540  	Comment string  // a hint as to its purpose
   541  	Edges   []Value // Edges[i] is value for Block().Preds[i]
   542  }
   543  
   544  // The Call instruction represents a function or method call.
   545  //
   546  // The Call instruction yields the function result if there is exactly
   547  // one.  Otherwise it returns a tuple, the components of which are
   548  // accessed via Extract.
   549  //
   550  // See CallCommon for generic function call documentation.
   551  //
   552  // Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
   553  //
   554  // Example printed form:
   555  //
   556  //	t2 = println(t0, t1)
   557  //	t4 = t3()
   558  //	t7 = invoke t5.Println(...t6)
   559  type Call struct {
   560  	register
   561  	Call CallCommon
   562  }
   563  
   564  // The BinOp instruction yields the result of binary operation X Op Y.
   565  //
   566  // Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
   567  //
   568  // Example printed form:
   569  //
   570  //	t1 = t0 + 1:int
   571  type BinOp struct {
   572  	register
   573  	// One of:
   574  	// ADD SUB MUL QUO REM          + - * / %
   575  	// AND OR XOR SHL SHR AND_NOT   & | ^ << >> &^
   576  	// EQL NEQ LSS LEQ GTR GEQ      == != < <= < >=
   577  	Op   token.Token
   578  	X, Y Value
   579  }
   580  
   581  // The UnOp instruction yields the result of Op X.
   582  // ARROW is channel receive.
   583  // MUL is pointer indirection (load).
   584  // XOR is bitwise complement.
   585  // SUB is negation.
   586  // NOT is logical negation.
   587  //
   588  // If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
   589  // and a boolean indicating the success of the receive.  The
   590  // components of the tuple are accessed using Extract.
   591  //
   592  // Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
   593  // For receive operations (ARROW) implicit in ranging over a channel,
   594  // Pos() returns the ast.RangeStmt.For.
   595  // For implicit memory loads (STAR), Pos() returns the position of the
   596  // most closely associated source-level construct; the details are not
   597  // specified.
   598  //
   599  // Example printed form:
   600  //
   601  //	t0 = *x
   602  //	t2 = <-t1,ok
   603  type UnOp struct {
   604  	register
   605  	Op      token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
   606  	X       Value
   607  	CommaOk bool
   608  }
   609  
   610  // The ChangeType instruction applies to X a value-preserving type
   611  // change to Type().
   612  //
   613  // Type changes are permitted:
   614  //   - between a named type and its underlying type.
   615  //   - between two named types of the same underlying type.
   616  //   - between (possibly named) pointers to identical base types.
   617  //   - from a bidirectional channel to a read- or write-channel,
   618  //     optionally adding/removing a name.
   619  //   - between a type (t) and an instance of the type (tσ), i.e.
   620  //     Type() == σ(X.Type()) (or X.Type()== σ(Type())) where
   621  //     σ is the type substitution of Parent().TypeParams by
   622  //     Parent().TypeArgs.
   623  //
   624  // This operation cannot fail dynamically.
   625  //
   626  // Type changes may to be to or from a type parameter (or both). All
   627  // types in the type set of X.Type() have a value-preserving type
   628  // change to all types in the type set of Type().
   629  //
   630  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   631  // from an explicit conversion in the source.
   632  //
   633  // Example printed form:
   634  //
   635  //	t1 = changetype *int <- IntPtr (t0)
   636  type ChangeType struct {
   637  	register
   638  	X Value
   639  }
   640  
   641  // The Convert instruction yields the conversion of value X to type
   642  // Type().  One or both of those types is basic (but possibly named).
   643  //
   644  // A conversion may change the value and representation of its operand.
   645  // Conversions are permitted:
   646  //   - between real numeric types.
   647  //   - between complex numeric types.
   648  //   - between string and []byte or []rune.
   649  //   - between pointers and unsafe.Pointer.
   650  //   - between unsafe.Pointer and uintptr.
   651  //   - from (Unicode) integer to (UTF-8) string.
   652  //
   653  // A conversion may imply a type name change also.
   654  //
   655  // Conversions may to be to or from a type parameter. All types in
   656  // the type set of X.Type() can be converted to all types in the type
   657  // set of Type().
   658  //
   659  // This operation cannot fail dynamically.
   660  //
   661  // Conversions of untyped string/number/bool constants to a specific
   662  // representation are eliminated during SSA construction.
   663  //
   664  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   665  // from an explicit conversion in the source.
   666  //
   667  // Example printed form:
   668  //
   669  //	t1 = convert []byte <- string (t0)
   670  type Convert struct {
   671  	register
   672  	X Value
   673  }
   674  
   675  // The MultiConvert instruction yields the conversion of value X to type
   676  // Type(). Either X.Type() or Type() must be a type parameter. Each
   677  // type in the type set of X.Type() can be converted to each type in the
   678  // type set of Type().
   679  //
   680  // See the documentation for Convert, ChangeType, and SliceToArrayPointer
   681  // for the conversions that are permitted. Additionally conversions of
   682  // slices to arrays are permitted.
   683  //
   684  // This operation can fail dynamically (see SliceToArrayPointer).
   685  //
   686  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   687  // from an explicit conversion in the source.
   688  //
   689  // Example printed form:
   690  //
   691  //	t1 = multiconvert D <- S (t0) [*[2]rune <- []rune | string <- []rune]
   692  type MultiConvert struct {
   693  	register
   694  	X    Value
   695  	from []*types.Term
   696  	to   []*types.Term
   697  }
   698  
   699  // ChangeInterface constructs a value of one interface type from a
   700  // value of another interface type known to be assignable to it.
   701  // This operation cannot fail.
   702  //
   703  // Pos() returns the ast.CallExpr.Lparen if the instruction arose from
   704  // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
   705  // instruction arose from an explicit e.(T) operation; or token.NoPos
   706  // otherwise.
   707  //
   708  // Example printed form:
   709  //
   710  //	t1 = change interface interface{} <- I (t0)
   711  type ChangeInterface struct {
   712  	register
   713  	X Value
   714  }
   715  
   716  // The SliceToArrayPointer instruction yields the conversion of slice X to
   717  // array pointer.
   718  //
   719  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   720  // from an explicit conversion in the source.
   721  //
   722  // Conversion may to be to or from a type parameter. All types in
   723  // the type set of X.Type() must be a slice types that can be converted to
   724  // all types in the type set of Type() which must all be pointer to array
   725  // types.
   726  //
   727  // This operation can fail dynamically if the length of the slice is less
   728  // than the length of the array.
   729  //
   730  // Example printed form:
   731  //
   732  //	t1 = slice to array pointer *[4]byte <- []byte (t0)
   733  type SliceToArrayPointer struct {
   734  	register
   735  	X Value
   736  }
   737  
   738  // MakeInterface constructs an instance of an interface type from a
   739  // value of a concrete type.
   740  //
   741  // Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
   742  // of X, and Program.MethodValue(m) to find the implementation of a method.
   743  //
   744  // To construct the zero value of an interface type T, use:
   745  //
   746  //	NewConst(constant.MakeNil(), T, pos)
   747  //
   748  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   749  // from an explicit conversion in the source.
   750  //
   751  // Example printed form:
   752  //
   753  //	t1 = make interface{} <- int (42:int)
   754  //	t2 = make Stringer <- t0
   755  type MakeInterface struct {
   756  	register
   757  	X Value
   758  }
   759  
   760  // The MakeClosure instruction yields a closure value whose code is
   761  // Fn and whose free variables' values are supplied by Bindings.
   762  //
   763  // Type() returns a (possibly named) *types.Signature.
   764  //
   765  // Pos() returns the ast.FuncLit.Type.Func for a function literal
   766  // closure or the ast.SelectorExpr.Sel for a bound method closure.
   767  //
   768  // Example printed form:
   769  //
   770  //	t0 = make closure anon@1.2 [x y z]
   771  //	t1 = make closure bound$(main.I).add [i]
   772  type MakeClosure struct {
   773  	register
   774  	Fn       Value   // always a *Function
   775  	Bindings []Value // values for each free variable in Fn.FreeVars
   776  }
   777  
   778  // The MakeMap instruction creates a new hash-table-based map object
   779  // and yields a value of kind map.
   780  //
   781  // Type() returns a (possibly named) *types.Map.
   782  //
   783  // Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
   784  // the ast.CompositeLit.Lbrack if created by a literal.
   785  //
   786  // Example printed form:
   787  //
   788  //	t1 = make map[string]int t0
   789  //	t1 = make StringIntMap t0
   790  type MakeMap struct {
   791  	register
   792  	Reserve Value // initial space reservation; nil => default
   793  }
   794  
   795  // The MakeChan instruction creates a new channel object and yields a
   796  // value of kind chan.
   797  //
   798  // Type() returns a (possibly named) *types.Chan.
   799  //
   800  // Pos() returns the ast.CallExpr.Lparen for the make(chan) that
   801  // created it.
   802  //
   803  // Example printed form:
   804  //
   805  //	t0 = make chan int 0
   806  //	t0 = make IntChan 0
   807  type MakeChan struct {
   808  	register
   809  	Size Value // int; size of buffer; zero => synchronous.
   810  }
   811  
   812  // The MakeSlice instruction yields a slice of length Len backed by a
   813  // newly allocated array of length Cap.
   814  //
   815  // Both Len and Cap must be non-nil Values of integer type.
   816  //
   817  // (Alloc(types.Array) followed by Slice will not suffice because
   818  // Alloc can only create arrays of constant length.)
   819  //
   820  // Type() returns a (possibly named) *types.Slice.
   821  //
   822  // Pos() returns the ast.CallExpr.Lparen for the make([]T) that
   823  // created it.
   824  //
   825  // Example printed form:
   826  //
   827  //	t1 = make []string 1:int t0
   828  //	t1 = make StringSlice 1:int t0
   829  type MakeSlice struct {
   830  	register
   831  	Len Value
   832  	Cap Value
   833  }
   834  
   835  // The Slice instruction yields a slice of an existing string, slice
   836  // or *array X between optional integer bounds Low and High.
   837  //
   838  // Dynamically, this instruction panics if X evaluates to a nil *array
   839  // pointer.
   840  //
   841  // Type() returns string if the type of X was string, otherwise a
   842  // *types.Slice with the same element type as X.
   843  //
   844  // Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
   845  // operation, the ast.CompositeLit.Lbrace if created by a literal, or
   846  // NoPos if not explicit in the source (e.g. a variadic argument slice).
   847  //
   848  // Example printed form:
   849  //
   850  //	t1 = slice t0[1:]
   851  type Slice struct {
   852  	register
   853  	X              Value // slice, string, or *array
   854  	Low, High, Max Value // each may be nil
   855  }
   856  
   857  // The FieldAddr instruction yields the address of Field of *struct X.
   858  //
   859  // The field is identified by its index within the field list of the
   860  // struct type of X.
   861  //
   862  // Dynamically, this instruction panics if X evaluates to a nil
   863  // pointer.
   864  //
   865  // Type() returns a (possibly named) *types.Pointer.
   866  //
   867  // Pos() returns the position of the ast.SelectorExpr.Sel for the
   868  // field, if explicit in the source. For implicit selections, returns
   869  // the position of the inducing explicit selection. If produced for a
   870  // struct literal S{f: e}, it returns the position of the colon; for
   871  // S{e} it returns the start of expression e.
   872  //
   873  // Example printed form:
   874  //
   875  //	t1 = &t0.name [#1]
   876  type FieldAddr struct {
   877  	register
   878  	X     Value // *struct
   879  	Field int   // index into CoreType(CoreType(X.Type()).(*types.Pointer).Elem()).(*types.Struct).Fields
   880  }
   881  
   882  // The Field instruction yields the Field of struct X.
   883  //
   884  // The field is identified by its index within the field list of the
   885  // struct type of X; by using numeric indices we avoid ambiguity of
   886  // package-local identifiers and permit compact representations.
   887  //
   888  // Pos() returns the position of the ast.SelectorExpr.Sel for the
   889  // field, if explicit in the source. For implicit selections, returns
   890  // the position of the inducing explicit selection.
   891  
   892  // Example printed form:
   893  //
   894  //	t1 = t0.name [#1]
   895  type Field struct {
   896  	register
   897  	X     Value // struct
   898  	Field int   // index into CoreType(X.Type()).(*types.Struct).Fields
   899  }
   900  
   901  // The IndexAddr instruction yields the address of the element at
   902  // index Index of collection X.  Index is an integer expression.
   903  //
   904  // The elements of maps and strings are not addressable; use Lookup (map),
   905  // Index (string), or MapUpdate instead.
   906  //
   907  // Dynamically, this instruction panics if X evaluates to a nil *array
   908  // pointer.
   909  //
   910  // Type() returns a (possibly named) *types.Pointer.
   911  //
   912  // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
   913  // explicit in the source.
   914  //
   915  // Example printed form:
   916  //
   917  //	t2 = &t0[t1]
   918  type IndexAddr struct {
   919  	register
   920  	X     Value // *array, slice or type parameter with types array, *array, or slice.
   921  	Index Value // numeric index
   922  }
   923  
   924  // The Index instruction yields element Index of collection X, an array,
   925  // string or type parameter containing an array, a string, a pointer to an,
   926  // array or a slice.
   927  //
   928  // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
   929  // explicit in the source.
   930  //
   931  // Example printed form:
   932  //
   933  //	t2 = t0[t1]
   934  type Index struct {
   935  	register
   936  	X     Value // array, string or type parameter with types array, *array, slice, or string.
   937  	Index Value // integer index
   938  }
   939  
   940  // The Lookup instruction yields element Index of collection map X.
   941  // Index is the appropriate key type.
   942  //
   943  // If CommaOk, the result is a 2-tuple of the value above and a
   944  // boolean indicating the result of a map membership test for the key.
   945  // The components of the tuple are accessed using Extract.
   946  //
   947  // Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
   948  //
   949  // Example printed form:
   950  //
   951  //	t2 = t0[t1]
   952  //	t5 = t3[t4],ok
   953  type Lookup struct {
   954  	register
   955  	X       Value // map
   956  	Index   Value // key-typed index
   957  	CommaOk bool  // return a value,ok pair
   958  }
   959  
   960  // SelectState is a helper for Select.
   961  // It represents one goal state and its corresponding communication.
   962  type SelectState struct {
   963  	Dir       types.ChanDir // direction of case (SendOnly or RecvOnly)
   964  	Chan      Value         // channel to use (for send or receive)
   965  	Send      Value         // value to send (for send)
   966  	Pos       token.Pos     // position of token.ARROW
   967  	DebugNode ast.Node      // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
   968  }
   969  
   970  // The Select instruction tests whether (or blocks until) one
   971  // of the specified sent or received states is entered.
   972  //
   973  // Let n be the number of States for which Dir==RECV and T_i (0<=i<n)
   974  // be the element type of each such state's Chan.
   975  // Select returns an n+2-tuple
   976  //
   977  //	(index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1)
   978  //
   979  // The tuple's components, described below, must be accessed via the
   980  // Extract instruction.
   981  //
   982  // If Blocking, select waits until exactly one state holds, i.e. a
   983  // channel becomes ready for the designated operation of sending or
   984  // receiving; select chooses one among the ready states
   985  // pseudorandomly, performs the send or receive operation, and sets
   986  // 'index' to the index of the chosen channel.
   987  //
   988  // If !Blocking, select doesn't block if no states hold; instead it
   989  // returns immediately with index equal to -1.
   990  //
   991  // If the chosen channel was used for a receive, the r_i component is
   992  // set to the received value, where i is the index of that state among
   993  // all n receive states; otherwise r_i has the zero value of type T_i.
   994  // Note that the receive index i is not the same as the state
   995  // index index.
   996  //
   997  // The second component of the triple, recvOk, is a boolean whose value
   998  // is true iff the selected operation was a receive and the receive
   999  // successfully yielded a value.
  1000  //
  1001  // Pos() returns the ast.SelectStmt.Select.
  1002  //
  1003  // Example printed form:
  1004  //
  1005  //	t3 = select nonblocking [<-t0, t1<-t2]
  1006  //	t4 = select blocking []
  1007  type Select struct {
  1008  	register
  1009  	States   []*SelectState
  1010  	Blocking bool
  1011  }
  1012  
  1013  // The Range instruction yields an iterator over the domain and range
  1014  // of X, which must be a string or map.
  1015  //
  1016  // Elements are accessed via Next.
  1017  //
  1018  // Type() returns an opaque and degenerate "rangeIter" type.
  1019  //
  1020  // Pos() returns the ast.RangeStmt.For.
  1021  //
  1022  // Example printed form:
  1023  //
  1024  //	t0 = range "hello":string
  1025  type Range struct {
  1026  	register
  1027  	X Value // string or map
  1028  }
  1029  
  1030  // The Next instruction reads and advances the (map or string)
  1031  // iterator Iter and returns a 3-tuple value (ok, k, v).  If the
  1032  // iterator is not exhausted, ok is true and k and v are the next
  1033  // elements of the domain and range, respectively.  Otherwise ok is
  1034  // false and k and v are undefined.
  1035  //
  1036  // Components of the tuple are accessed using Extract.
  1037  //
  1038  // The IsString field distinguishes iterators over strings from those
  1039  // over maps, as the Type() alone is insufficient: consider
  1040  // map[int]rune.
  1041  //
  1042  // Type() returns a *types.Tuple for the triple (ok, k, v).
  1043  // The types of k and/or v may be types.Invalid.
  1044  //
  1045  // Example printed form:
  1046  //
  1047  //	t1 = next t0
  1048  type Next struct {
  1049  	register
  1050  	Iter     Value
  1051  	IsString bool // true => string iterator; false => map iterator.
  1052  }
  1053  
  1054  // The TypeAssert instruction tests whether interface value X has type
  1055  // AssertedType.
  1056  //
  1057  // If !CommaOk, on success it returns v, the result of the conversion
  1058  // (defined below); on failure it panics.
  1059  //
  1060  // If CommaOk: on success it returns a pair (v, true) where v is the
  1061  // result of the conversion; on failure it returns (z, false) where z
  1062  // is AssertedType's zero value.  The components of the pair must be
  1063  // accessed using the Extract instruction.
  1064  //
  1065  // If Underlying: tests whether interface value X has the underlying
  1066  // type AssertedType.
  1067  //
  1068  // If AssertedType is a concrete type, TypeAssert checks whether the
  1069  // dynamic type in interface X is equal to it, and if so, the result
  1070  // of the conversion is a copy of the value in the interface.
  1071  //
  1072  // If AssertedType is an interface, TypeAssert checks whether the
  1073  // dynamic type of the interface is assignable to it, and if so, the
  1074  // result of the conversion is a copy of the interface value X.
  1075  // If AssertedType is a superinterface of X.Type(), the operation will
  1076  // fail iff the operand is nil.  (Contrast with ChangeInterface, which
  1077  // performs no nil-check.)
  1078  //
  1079  // Type() reflects the actual type of the result, possibly a
  1080  // 2-types.Tuple; AssertedType is the asserted type.
  1081  //
  1082  // Depending on the TypeAssert's purpose, Pos may return:
  1083  //   - the ast.CallExpr.Lparen of an explicit T(e) conversion;
  1084  //   - the ast.TypeAssertExpr.Lparen of an explicit e.(T) operation;
  1085  //   - the ast.CaseClause.Case of a case of a type-switch statement;
  1086  //   - the Ident(m).NamePos of an interface method value i.m
  1087  //     (for which TypeAssert may be used to effect the nil check).
  1088  //
  1089  // Example printed form:
  1090  //
  1091  //	t1 = typeassert t0.(int)
  1092  //	t3 = typeassert,ok t2.(T)
  1093  type TypeAssert struct {
  1094  	register
  1095  	X            Value
  1096  	AssertedType types.Type
  1097  	CommaOk      bool
  1098  }
  1099  
  1100  // The Extract instruction yields component Index of Tuple.
  1101  //
  1102  // This is used to access the results of instructions with multiple
  1103  // return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
  1104  // IndexExpr(Map).
  1105  //
  1106  // Example printed form:
  1107  //
  1108  //	t1 = extract t0 #1
  1109  type Extract struct {
  1110  	register
  1111  	Tuple Value
  1112  	Index int
  1113  }
  1114  
  1115  // Instructions executed for effect.  They do not yield a value. --------------------
  1116  
  1117  // The Jump instruction transfers control to the sole successor of its
  1118  // owning block.
  1119  //
  1120  // A Jump must be the last instruction of its containing BasicBlock.
  1121  //
  1122  // Pos() returns NoPos.
  1123  //
  1124  // Example printed form:
  1125  //
  1126  //	jump done
  1127  type Jump struct {
  1128  	anInstruction
  1129  }
  1130  
  1131  // The If instruction transfers control to one of the two successors
  1132  // of its owning block, depending on the boolean Cond: the first if
  1133  // true, the second if false.
  1134  //
  1135  // An If instruction must be the last instruction of its containing
  1136  // BasicBlock.
  1137  //
  1138  // Pos() returns NoPos.
  1139  //
  1140  // Example printed form:
  1141  //
  1142  //	if t0 goto done else body
  1143  type If struct {
  1144  	anInstruction
  1145  	Cond Value
  1146  }
  1147  
  1148  // The Return instruction returns values and control back to the calling
  1149  // function.
  1150  //
  1151  // len(Results) is always equal to the number of results in the
  1152  // function's signature.
  1153  //
  1154  // If len(Results) > 1, Return returns a tuple value with the specified
  1155  // components which the caller must access using Extract instructions.
  1156  //
  1157  // There is no instruction to return a ready-made tuple like those
  1158  // returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
  1159  // a tail-call to a function with multiple result parameters.
  1160  //
  1161  // Return must be the last instruction of its containing BasicBlock.
  1162  // Such a block has no successors.
  1163  //
  1164  // Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
  1165  //
  1166  // Example printed form:
  1167  //
  1168  //	return
  1169  //	return nil:I, 2:int
  1170  type Return struct {
  1171  	anInstruction
  1172  	Results []Value
  1173  	pos     token.Pos
  1174  }
  1175  
  1176  // The RunDefers instruction pops and invokes the entire stack of
  1177  // procedure calls pushed by Defer instructions in this function.
  1178  //
  1179  // It is legal to encounter multiple 'rundefers' instructions in a
  1180  // single control-flow path through a function; this is useful in
  1181  // the combined init() function, for example.
  1182  //
  1183  // Pos() returns NoPos.
  1184  //
  1185  // Example printed form:
  1186  //
  1187  //	rundefers
  1188  type RunDefers struct {
  1189  	anInstruction
  1190  }
  1191  
  1192  // The Panic instruction initiates a panic with value X.
  1193  //
  1194  // A Panic instruction must be the last instruction of its containing
  1195  // BasicBlock, which must have no successors.
  1196  //
  1197  // NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
  1198  // they are treated as calls to a built-in function.
  1199  //
  1200  // Pos() returns the ast.CallExpr.Lparen if this panic was explicit
  1201  // in the source.
  1202  //
  1203  // Example printed form:
  1204  //
  1205  //	panic t0
  1206  type Panic struct {
  1207  	anInstruction
  1208  	X   Value // an interface{}
  1209  	pos token.Pos
  1210  }
  1211  
  1212  // The Go instruction creates a new goroutine and calls the specified
  1213  // function within it.
  1214  //
  1215  // See CallCommon for generic function call documentation.
  1216  //
  1217  // Pos() returns the ast.GoStmt.Go.
  1218  //
  1219  // Example printed form:
  1220  //
  1221  //	go println(t0, t1)
  1222  //	go t3()
  1223  //	go invoke t5.Println(...t6)
  1224  type Go struct {
  1225  	anInstruction
  1226  	Call CallCommon
  1227  	pos  token.Pos
  1228  }
  1229  
  1230  // The Defer instruction pushes the specified call onto a stack of
  1231  // functions to be called by a RunDefers instruction or by a panic.
  1232  //
  1233  // See CallCommon for generic function call documentation.
  1234  //
  1235  // Pos() returns the ast.DeferStmt.Defer.
  1236  //
  1237  // Example printed form:
  1238  //
  1239  //	defer println(t0, t1)
  1240  //	defer t3()
  1241  //	defer invoke t5.Println(...t6)
  1242  type Defer struct {
  1243  	anInstruction
  1244  	Call CallCommon
  1245  	pos  token.Pos
  1246  }
  1247  
  1248  // The Send instruction sends X on channel Chan.
  1249  //
  1250  // Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
  1251  //
  1252  // Example printed form:
  1253  //
  1254  //	send t0 <- t1
  1255  type Send struct {
  1256  	anInstruction
  1257  	Chan, X Value
  1258  	pos     token.Pos
  1259  }
  1260  
  1261  // The Store instruction stores Val at address Addr.
  1262  // Stores can be of arbitrary types.
  1263  //
  1264  // Pos() returns the position of the source-level construct most closely
  1265  // associated with the memory store operation.
  1266  // Since implicit memory stores are numerous and varied and depend upon
  1267  // implementation choices, the details are not specified.
  1268  //
  1269  // Example printed form:
  1270  //
  1271  //	*x = y
  1272  type Store struct {
  1273  	anInstruction
  1274  	Addr Value
  1275  	Val  Value
  1276  	pos  token.Pos
  1277  }
  1278  
  1279  // The MapUpdate instruction updates the association of Map[Key] to
  1280  // Value.
  1281  //
  1282  // Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
  1283  // if explicit in the source.
  1284  //
  1285  // Example printed form:
  1286  //
  1287  //	t0[t1] = t2
  1288  type MapUpdate struct {
  1289  	anInstruction
  1290  	Map   Value
  1291  	Key   Value
  1292  	Value Value
  1293  	pos   token.Pos
  1294  }
  1295  
  1296  // A DebugRef instruction maps a source-level expression Expr to the
  1297  // SSA value X that represents the value (!IsAddr) or address (IsAddr)
  1298  // of that expression.
  1299  //
  1300  // DebugRef is a pseudo-instruction: it has no dynamic effect.
  1301  //
  1302  // Pos() returns Expr.Pos(), the start position of the source-level
  1303  // expression.  This is not the same as the "designated" token as
  1304  // documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
  1305  // position of the ("designated") Lparen token.
  1306  //
  1307  // If Expr is an *ast.Ident denoting a var or func, Object() returns
  1308  // the object; though this information can be obtained from the type
  1309  // checker, including it here greatly facilitates debugging.
  1310  // For non-Ident expressions, Object() returns nil.
  1311  //
  1312  // DebugRefs are generated only for functions built with debugging
  1313  // enabled; see Package.SetDebugMode() and the GlobalDebug builder
  1314  // mode flag.
  1315  //
  1316  // DebugRefs are not emitted for ast.Idents referring to constants or
  1317  // predeclared identifiers, since they are trivial and numerous.
  1318  // Nor are they emitted for ast.ParenExprs.
  1319  //
  1320  // (By representing these as instructions, rather than out-of-band,
  1321  // consistency is maintained during transformation passes by the
  1322  // ordinary SSA renaming machinery.)
  1323  //
  1324  // Example printed form:
  1325  //
  1326  //	; *ast.CallExpr @ 102:9 is t5
  1327  //	; var x float64 @ 109:72 is x
  1328  //	; address of *ast.CompositeLit @ 216:10 is t0
  1329  type DebugRef struct {
  1330  	// TODO(generics): Reconsider what DebugRefs are for generics.
  1331  	anInstruction
  1332  	Expr   ast.Expr     // the referring expression (never *ast.ParenExpr)
  1333  	object types.Object // the identity of the source var/func
  1334  	IsAddr bool         // Expr is addressable and X is the address it denotes
  1335  	X      Value        // the value or address of Expr
  1336  }
  1337  
  1338  // Embeddable mix-ins and helpers for common parts of other structs. -----------
  1339  
  1340  // register is a mix-in embedded by all SSA values that are also
  1341  // instructions, i.e. virtual registers, and provides a uniform
  1342  // implementation of most of the Value interface: Value.Name() is a
  1343  // numbered register (e.g. "t0"); the other methods are field accessors.
  1344  //
  1345  // Temporary names are automatically assigned to each register on
  1346  // completion of building a function in SSA form.
  1347  //
  1348  // Clients must not assume that the 'id' value (and the Name() derived
  1349  // from it) is unique within a function.  As always in this API,
  1350  // semantics are determined only by identity; names exist only to
  1351  // facilitate debugging.
  1352  type register struct {
  1353  	anInstruction
  1354  	num       int        // "name" of virtual register, e.g. "t0".  Not guaranteed unique.
  1355  	typ       types.Type // type of virtual register
  1356  	pos       token.Pos  // position of source expression, or NoPos
  1357  	referrers []Instruction
  1358  }
  1359  
  1360  // anInstruction is a mix-in embedded by all Instructions.
  1361  // It provides the implementations of the Block and setBlock methods.
  1362  type anInstruction struct {
  1363  	block *BasicBlock // the basic block of this instruction
  1364  }
  1365  
  1366  // CallCommon is contained by Go, Defer and Call to hold the
  1367  // common parts of a function or method call.
  1368  //
  1369  // Each CallCommon exists in one of two modes, function call and
  1370  // interface method invocation, or "call" and "invoke" for short.
  1371  //
  1372  // 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
  1373  // represents an ordinary function call of the value in Value,
  1374  // which may be a *Builtin, a *Function or any other value of kind
  1375  // 'func'.
  1376  //
  1377  // Value may be one of:
  1378  //
  1379  //	(a) a *Function, indicating a statically dispatched call
  1380  //	    to a package-level function, an anonymous function, or
  1381  //	    a method of a named type.
  1382  //	(b) a *MakeClosure, indicating an immediately applied
  1383  //	    function literal with free variables.
  1384  //	(c) a *Builtin, indicating a statically dispatched call
  1385  //	    to a built-in function.
  1386  //	(d) any other value, indicating a dynamically dispatched
  1387  //	    function call.
  1388  //
  1389  // StaticCallee returns the identity of the callee in cases
  1390  // (a) and (b), nil otherwise.
  1391  //
  1392  // Args contains the arguments to the call.  If Value is a method,
  1393  // Args[0] contains the receiver parameter.
  1394  //
  1395  // Example printed form:
  1396  //
  1397  //	t2 = println(t0, t1)
  1398  //	go t3()
  1399  //	defer t5(...t6)
  1400  //
  1401  // 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
  1402  // represents a dynamically dispatched call to an interface method.
  1403  // In this mode, Value is the interface value and Method is the
  1404  // interface's abstract method. The interface value may be a type
  1405  // parameter. Note: an interface method may be shared by multiple
  1406  // interfaces due to embedding; Value.Type() provides the specific
  1407  // interface used for this call.
  1408  //
  1409  // Value is implicitly supplied to the concrete method implementation
  1410  // as the receiver parameter; in other words, Args[0] holds not the
  1411  // receiver but the first true argument.
  1412  //
  1413  // Example printed form:
  1414  //
  1415  //	t1 = invoke t0.String()
  1416  //	go invoke t3.Run(t2)
  1417  //	defer invoke t4.Handle(...t5)
  1418  //
  1419  // For all calls to variadic functions (Signature().Variadic()),
  1420  // the last element of Args is a slice.
  1421  type CallCommon struct {
  1422  	Value  Value       // receiver (invoke mode) or func value (call mode)
  1423  	Method *types.Func // interface method (invoke mode)
  1424  	Args   []Value     // actual parameters (in static method call, includes receiver)
  1425  	pos    token.Pos   // position of CallExpr.Lparen, iff explicit in source
  1426  }
  1427  
  1428  // IsInvoke returns true if this call has "invoke" (not "call") mode.
  1429  func (c *CallCommon) IsInvoke() bool {
  1430  	return c.Method != nil
  1431  }
  1432  
  1433  func (c *CallCommon) Pos() token.Pos { return c.pos }
  1434  
  1435  // Signature returns the signature of the called function.
  1436  //
  1437  // For an "invoke"-mode call, the signature of the interface method is
  1438  // returned.
  1439  //
  1440  // In either "call" or "invoke" mode, if the callee is a method, its
  1441  // receiver is represented by sig.Recv, not sig.Params().At(0).
  1442  func (c *CallCommon) Signature() *types.Signature {
  1443  	if c.Method != nil {
  1444  		return c.Method.Type().(*types.Signature)
  1445  	}
  1446  	return typeparams.CoreType(c.Value.Type()).(*types.Signature)
  1447  }
  1448  
  1449  // StaticCallee returns the callee if this is a trivially static
  1450  // "call"-mode call to a function.
  1451  func (c *CallCommon) StaticCallee() *Function {
  1452  	switch fn := c.Value.(type) {
  1453  	case *Function:
  1454  		return fn
  1455  	case *MakeClosure:
  1456  		return fn.Fn.(*Function)
  1457  	}
  1458  	return nil
  1459  }
  1460  
  1461  // Description returns a description of the mode of this call suitable
  1462  // for a user interface, e.g., "static method call".
  1463  func (c *CallCommon) Description() string {
  1464  	switch fn := c.Value.(type) {
  1465  	case *Builtin:
  1466  		return "built-in function call"
  1467  	case *MakeClosure:
  1468  		return "static function closure call"
  1469  	case *Function:
  1470  		if fn.Signature.Recv() != nil {
  1471  			return "static method call"
  1472  		}
  1473  		return "static function call"
  1474  	}
  1475  	if c.IsInvoke() {
  1476  		return "dynamic method call" // ("invoke" mode)
  1477  	}
  1478  	return "dynamic function call"
  1479  }
  1480  
  1481  // The CallInstruction interface, implemented by *Go, *Defer and *Call,
  1482  // exposes the common parts of function-calling instructions,
  1483  // yet provides a way back to the Value defined by *Call alone.
  1484  type CallInstruction interface {
  1485  	Instruction
  1486  	Common() *CallCommon // returns the common parts of the call
  1487  	Value() *Call        // returns the result value of the call (*Call) or nil (*Go, *Defer)
  1488  }
  1489  
  1490  func (s *Call) Common() *CallCommon  { return &s.Call }
  1491  func (s *Defer) Common() *CallCommon { return &s.Call }
  1492  func (s *Go) Common() *CallCommon    { return &s.Call }
  1493  
  1494  func (s *Call) Value() *Call  { return s }
  1495  func (s *Defer) Value() *Call { return nil }
  1496  func (s *Go) Value() *Call    { return nil }
  1497  
  1498  func (v *Builtin) Type() types.Type        { return v.sig }
  1499  func (v *Builtin) Name() string            { return v.name }
  1500  func (*Builtin) Referrers() *[]Instruction { return nil }
  1501  func (v *Builtin) Pos() token.Pos          { return token.NoPos }
  1502  func (v *Builtin) Object() types.Object    { return types.Universe.Lookup(v.name) }
  1503  func (v *Builtin) Parent() *Function       { return nil }
  1504  
  1505  func (v *FreeVar) Type() types.Type          { return v.typ }
  1506  func (v *FreeVar) Name() string              { return v.name }
  1507  func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
  1508  func (v *FreeVar) Pos() token.Pos            { return v.pos }
  1509  func (v *FreeVar) Parent() *Function         { return v.parent }
  1510  
  1511  func (v *Global) Type() types.Type                     { return v.typ }
  1512  func (v *Global) Name() string                         { return v.name }
  1513  func (v *Global) Parent() *Function                    { return nil }
  1514  func (v *Global) Pos() token.Pos                       { return v.pos }
  1515  func (v *Global) Referrers() *[]Instruction            { return nil }
  1516  func (v *Global) Token() token.Token                   { return token.VAR }
  1517  func (v *Global) Object() types.Object                 { return v.object }
  1518  func (v *Global) String() string                       { return v.RelString(nil) }
  1519  func (v *Global) Package() *Package                    { return v.Pkg }
  1520  func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
  1521  
  1522  func (v *Function) Name() string       { return v.name }
  1523  func (v *Function) Type() types.Type   { return v.Signature }
  1524  func (v *Function) Pos() token.Pos     { return v.pos }
  1525  func (v *Function) Token() token.Token { return token.FUNC }
  1526  func (v *Function) Object() types.Object {
  1527  	if v.object != nil {
  1528  		return types.Object(v.object)
  1529  	}
  1530  	return nil
  1531  }
  1532  func (v *Function) String() string    { return v.RelString(nil) }
  1533  func (v *Function) Package() *Package { return v.Pkg }
  1534  func (v *Function) Parent() *Function { return v.parent }
  1535  func (v *Function) Referrers() *[]Instruction {
  1536  	if v.parent != nil {
  1537  		return &v.referrers
  1538  	}
  1539  	return nil
  1540  }
  1541  
  1542  // TypeParams are the function's type parameters if generic or the
  1543  // type parameters that were instantiated if fn is an instantiation.
  1544  func (fn *Function) TypeParams() *types.TypeParamList {
  1545  	return fn.typeparams
  1546  }
  1547  
  1548  // TypeArgs are the types that TypeParams() were instantiated by to create fn
  1549  // from fn.Origin().
  1550  func (fn *Function) TypeArgs() []types.Type { return fn.typeargs }
  1551  
  1552  // Origin returns the generic function from which fn was instantiated,
  1553  // or nil if fn is not an instantiation.
  1554  func (fn *Function) Origin() *Function {
  1555  	if fn.parent != nil && len(fn.typeargs) > 0 {
  1556  		// Nested functions are BUILT at a different time than their instances.
  1557  		// Build declared package if not yet BUILT. This is not an expected use
  1558  		// case, but is simple and robust.
  1559  		fn.declaredPackage().Build()
  1560  	}
  1561  	return origin(fn)
  1562  }
  1563  
  1564  // origin is the function that fn is an instantiation of. Returns nil if fn is
  1565  // not an instantiation.
  1566  //
  1567  // Precondition: fn and the origin function are done building.
  1568  func origin(fn *Function) *Function {
  1569  	if fn.parent != nil && len(fn.typeargs) > 0 {
  1570  		return origin(fn.parent).AnonFuncs[fn.anonIdx]
  1571  	}
  1572  	return fn.topLevelOrigin
  1573  }
  1574  
  1575  func (v *Parameter) Type() types.Type          { return v.typ }
  1576  func (v *Parameter) Name() string              { return v.name }
  1577  func (v *Parameter) Object() types.Object      { return v.object }
  1578  func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
  1579  func (v *Parameter) Pos() token.Pos            { return v.object.Pos() }
  1580  func (v *Parameter) Parent() *Function         { return v.parent }
  1581  
  1582  func (v *Alloc) Type() types.Type          { return v.typ }
  1583  func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
  1584  func (v *Alloc) Pos() token.Pos            { return v.pos }
  1585  
  1586  func (v *register) Type() types.Type          { return v.typ }
  1587  func (v *register) setType(typ types.Type)    { v.typ = typ }
  1588  func (v *register) Name() string              { return fmt.Sprintf("t%d", v.num) }
  1589  func (v *register) setNum(num int)            { v.num = num }
  1590  func (v *register) Referrers() *[]Instruction { return &v.referrers }
  1591  func (v *register) Pos() token.Pos            { return v.pos }
  1592  func (v *register) setPos(pos token.Pos)      { v.pos = pos }
  1593  
  1594  func (v *anInstruction) Parent() *Function          { return v.block.parent }
  1595  func (v *anInstruction) Block() *BasicBlock         { return v.block }
  1596  func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
  1597  func (v *anInstruction) Referrers() *[]Instruction  { return nil }
  1598  
  1599  func (t *Type) Name() string                         { return t.object.Name() }
  1600  func (t *Type) Pos() token.Pos                       { return t.object.Pos() }
  1601  func (t *Type) Type() types.Type                     { return t.object.Type() }
  1602  func (t *Type) Token() token.Token                   { return token.TYPE }
  1603  func (t *Type) Object() types.Object                 { return t.object }
  1604  func (t *Type) String() string                       { return t.RelString(nil) }
  1605  func (t *Type) Package() *Package                    { return t.pkg }
  1606  func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
  1607  
  1608  func (c *NamedConst) Name() string                         { return c.object.Name() }
  1609  func (c *NamedConst) Pos() token.Pos                       { return c.object.Pos() }
  1610  func (c *NamedConst) String() string                       { return c.RelString(nil) }
  1611  func (c *NamedConst) Type() types.Type                     { return c.object.Type() }
  1612  func (c *NamedConst) Token() token.Token                   { return token.CONST }
  1613  func (c *NamedConst) Object() types.Object                 { return c.object }
  1614  func (c *NamedConst) Package() *Package                    { return c.pkg }
  1615  func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
  1616  
  1617  func (d *DebugRef) Object() types.Object { return d.object }
  1618  
  1619  // Func returns the package-level function of the specified name,
  1620  // or nil if not found.
  1621  func (p *Package) Func(name string) (f *Function) {
  1622  	f, _ = p.Members[name].(*Function)
  1623  	return
  1624  }
  1625  
  1626  // Var returns the package-level variable of the specified name,
  1627  // or nil if not found.
  1628  func (p *Package) Var(name string) (g *Global) {
  1629  	g, _ = p.Members[name].(*Global)
  1630  	return
  1631  }
  1632  
  1633  // Const returns the package-level constant of the specified name,
  1634  // or nil if not found.
  1635  func (p *Package) Const(name string) (c *NamedConst) {
  1636  	c, _ = p.Members[name].(*NamedConst)
  1637  	return
  1638  }
  1639  
  1640  // Type returns the package-level type of the specified name,
  1641  // or nil if not found.
  1642  func (p *Package) Type(name string) (t *Type) {
  1643  	t, _ = p.Members[name].(*Type)
  1644  	return
  1645  }
  1646  
  1647  func (v *Call) Pos() token.Pos      { return v.Call.pos }
  1648  func (s *Defer) Pos() token.Pos     { return s.pos }
  1649  func (s *Go) Pos() token.Pos        { return s.pos }
  1650  func (s *MapUpdate) Pos() token.Pos { return s.pos }
  1651  func (s *Panic) Pos() token.Pos     { return s.pos }
  1652  func (s *Return) Pos() token.Pos    { return s.pos }
  1653  func (s *Send) Pos() token.Pos      { return s.pos }
  1654  func (s *Store) Pos() token.Pos     { return s.pos }
  1655  func (s *If) Pos() token.Pos        { return token.NoPos }
  1656  func (s *Jump) Pos() token.Pos      { return token.NoPos }
  1657  func (s *RunDefers) Pos() token.Pos { return token.NoPos }
  1658  func (s *DebugRef) Pos() token.Pos  { return s.Expr.Pos() }
  1659  
  1660  // Operands.
  1661  
  1662  func (v *Alloc) Operands(rands []*Value) []*Value {
  1663  	return rands
  1664  }
  1665  
  1666  func (v *BinOp) Operands(rands []*Value) []*Value {
  1667  	return append(rands, &v.X, &v.Y)
  1668  }
  1669  
  1670  func (c *CallCommon) Operands(rands []*Value) []*Value {
  1671  	rands = append(rands, &c.Value)
  1672  	for i := range c.Args {
  1673  		rands = append(rands, &c.Args[i])
  1674  	}
  1675  	return rands
  1676  }
  1677  
  1678  func (s *Go) Operands(rands []*Value) []*Value {
  1679  	return s.Call.Operands(rands)
  1680  }
  1681  
  1682  func (s *Call) Operands(rands []*Value) []*Value {
  1683  	return s.Call.Operands(rands)
  1684  }
  1685  
  1686  func (s *Defer) Operands(rands []*Value) []*Value {
  1687  	return s.Call.Operands(rands)
  1688  }
  1689  
  1690  func (v *ChangeInterface) Operands(rands []*Value) []*Value {
  1691  	return append(rands, &v.X)
  1692  }
  1693  
  1694  func (v *ChangeType) Operands(rands []*Value) []*Value {
  1695  	return append(rands, &v.X)
  1696  }
  1697  
  1698  func (v *Convert) Operands(rands []*Value) []*Value {
  1699  	return append(rands, &v.X)
  1700  }
  1701  
  1702  func (v *MultiConvert) Operands(rands []*Value) []*Value {
  1703  	return append(rands, &v.X)
  1704  }
  1705  
  1706  func (v *SliceToArrayPointer) Operands(rands []*Value) []*Value {
  1707  	return append(rands, &v.X)
  1708  }
  1709  
  1710  func (s *DebugRef) Operands(rands []*Value) []*Value {
  1711  	return append(rands, &s.X)
  1712  }
  1713  
  1714  func (v *Extract) Operands(rands []*Value) []*Value {
  1715  	return append(rands, &v.Tuple)
  1716  }
  1717  
  1718  func (v *Field) Operands(rands []*Value) []*Value {
  1719  	return append(rands, &v.X)
  1720  }
  1721  
  1722  func (v *FieldAddr) Operands(rands []*Value) []*Value {
  1723  	return append(rands, &v.X)
  1724  }
  1725  
  1726  func (s *If) Operands(rands []*Value) []*Value {
  1727  	return append(rands, &s.Cond)
  1728  }
  1729  
  1730  func (v *Index) Operands(rands []*Value) []*Value {
  1731  	return append(rands, &v.X, &v.Index)
  1732  }
  1733  
  1734  func (v *IndexAddr) Operands(rands []*Value) []*Value {
  1735  	return append(rands, &v.X, &v.Index)
  1736  }
  1737  
  1738  func (*Jump) Operands(rands []*Value) []*Value {
  1739  	return rands
  1740  }
  1741  
  1742  func (v *Lookup) Operands(rands []*Value) []*Value {
  1743  	return append(rands, &v.X, &v.Index)
  1744  }
  1745  
  1746  func (v *MakeChan) Operands(rands []*Value) []*Value {
  1747  	return append(rands, &v.Size)
  1748  }
  1749  
  1750  func (v *MakeClosure) Operands(rands []*Value) []*Value {
  1751  	rands = append(rands, &v.Fn)
  1752  	for i := range v.Bindings {
  1753  		rands = append(rands, &v.Bindings[i])
  1754  	}
  1755  	return rands
  1756  }
  1757  
  1758  func (v *MakeInterface) Operands(rands []*Value) []*Value {
  1759  	return append(rands, &v.X)
  1760  }
  1761  
  1762  func (v *MakeMap) Operands(rands []*Value) []*Value {
  1763  	return append(rands, &v.Reserve)
  1764  }
  1765  
  1766  func (v *MakeSlice) Operands(rands []*Value) []*Value {
  1767  	return append(rands, &v.Len, &v.Cap)
  1768  }
  1769  
  1770  func (v *MapUpdate) Operands(rands []*Value) []*Value {
  1771  	return append(rands, &v.Map, &v.Key, &v.Value)
  1772  }
  1773  
  1774  func (v *Next) Operands(rands []*Value) []*Value {
  1775  	return append(rands, &v.Iter)
  1776  }
  1777  
  1778  func (s *Panic) Operands(rands []*Value) []*Value {
  1779  	return append(rands, &s.X)
  1780  }
  1781  
  1782  func (v *Phi) Operands(rands []*Value) []*Value {
  1783  	for i := range v.Edges {
  1784  		rands = append(rands, &v.Edges[i])
  1785  	}
  1786  	return rands
  1787  }
  1788  
  1789  func (v *Range) Operands(rands []*Value) []*Value {
  1790  	return append(rands, &v.X)
  1791  }
  1792  
  1793  func (s *Return) Operands(rands []*Value) []*Value {
  1794  	for i := range s.Results {
  1795  		rands = append(rands, &s.Results[i])
  1796  	}
  1797  	return rands
  1798  }
  1799  
  1800  func (*RunDefers) Operands(rands []*Value) []*Value {
  1801  	return rands
  1802  }
  1803  
  1804  func (v *Select) Operands(rands []*Value) []*Value {
  1805  	for i := range v.States {
  1806  		rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
  1807  	}
  1808  	return rands
  1809  }
  1810  
  1811  func (s *Send) Operands(rands []*Value) []*Value {
  1812  	return append(rands, &s.Chan, &s.X)
  1813  }
  1814  
  1815  func (v *Slice) Operands(rands []*Value) []*Value {
  1816  	return append(rands, &v.X, &v.Low, &v.High, &v.Max)
  1817  }
  1818  
  1819  func (s *Store) Operands(rands []*Value) []*Value {
  1820  	return append(rands, &s.Addr, &s.Val)
  1821  }
  1822  
  1823  func (v *TypeAssert) Operands(rands []*Value) []*Value {
  1824  	return append(rands, &v.X)
  1825  }
  1826  
  1827  func (v *UnOp) Operands(rands []*Value) []*Value {
  1828  	return append(rands, &v.X)
  1829  }
  1830  
  1831  // Non-Instruction Values:
  1832  func (v *Builtin) Operands(rands []*Value) []*Value   { return rands }
  1833  func (v *FreeVar) Operands(rands []*Value) []*Value   { return rands }
  1834  func (v *Const) Operands(rands []*Value) []*Value     { return rands }
  1835  func (v *Function) Operands(rands []*Value) []*Value  { return rands }
  1836  func (v *Global) Operands(rands []*Value) []*Value    { return rands }
  1837  func (v *Parameter) Operands(rands []*Value) []*Value { return rands }
  1838  

View as plain text