...

Source file src/golang.org/x/tools/go/ssa/dom.go

Documentation: golang.org/x/tools/go/ssa

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // This file defines algorithms related to dominance.
     8  
     9  // Dominator tree construction ----------------------------------------
    10  //
    11  // We use the algorithm described in Lengauer & Tarjan. 1979.  A fast
    12  // algorithm for finding dominators in a flowgraph.
    13  // http://doi.acm.org/10.1145/357062.357071
    14  //
    15  // We also apply the optimizations to SLT described in Georgiadis et
    16  // al, Finding Dominators in Practice, JGAA 2006,
    17  // http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf
    18  // to avoid the need for buckets of size > 1.
    19  
    20  import (
    21  	"bytes"
    22  	"fmt"
    23  	"math/big"
    24  	"os"
    25  	"sort"
    26  )
    27  
    28  // Idom returns the block that immediately dominates b:
    29  // its parent in the dominator tree, if any.
    30  // Neither the entry node (b.Index==0) nor recover node
    31  // (b==b.Parent().Recover()) have a parent.
    32  func (b *BasicBlock) Idom() *BasicBlock { return b.dom.idom }
    33  
    34  // Dominees returns the list of blocks that b immediately dominates:
    35  // its children in the dominator tree.
    36  func (b *BasicBlock) Dominees() []*BasicBlock { return b.dom.children }
    37  
    38  // Dominates reports whether b dominates c.
    39  func (b *BasicBlock) Dominates(c *BasicBlock) bool {
    40  	return b.dom.pre <= c.dom.pre && c.dom.post <= b.dom.post
    41  }
    42  
    43  // DomPreorder returns a new slice containing the blocks of f
    44  // in a preorder traversal of the dominator tree.
    45  func (f *Function) DomPreorder() []*BasicBlock {
    46  	slice := append([]*BasicBlock(nil), f.Blocks...)
    47  	sort.Slice(slice, func(i, j int) bool {
    48  		return slice[i].dom.pre < slice[j].dom.pre
    49  	})
    50  	return slice
    51  }
    52  
    53  // DomPostorder returns a new slice containing the blocks of f
    54  // in a postorder traversal of the dominator tree.
    55  // (This is not the same as a postdominance order.)
    56  func (f *Function) DomPostorder() []*BasicBlock {
    57  	slice := append([]*BasicBlock(nil), f.Blocks...)
    58  	sort.Slice(slice, func(i, j int) bool {
    59  		return slice[i].dom.post < slice[j].dom.post
    60  	})
    61  	return slice
    62  }
    63  
    64  // domInfo contains a BasicBlock's dominance information.
    65  type domInfo struct {
    66  	idom      *BasicBlock   // immediate dominator (parent in domtree)
    67  	children  []*BasicBlock // nodes immediately dominated by this one
    68  	pre, post int32         // pre- and post-order numbering within domtree
    69  }
    70  
    71  // ltState holds the working state for Lengauer-Tarjan algorithm
    72  // (during which domInfo.pre is repurposed for CFG DFS preorder number).
    73  type ltState struct {
    74  	// Each slice is indexed by b.Index.
    75  	sdom     []*BasicBlock // b's semidominator
    76  	parent   []*BasicBlock // b's parent in DFS traversal of CFG
    77  	ancestor []*BasicBlock // b's ancestor with least sdom
    78  }
    79  
    80  // dfs implements the depth-first search part of the LT algorithm.
    81  func (lt *ltState) dfs(v *BasicBlock, i int32, preorder []*BasicBlock) int32 {
    82  	preorder[i] = v
    83  	v.dom.pre = i // For now: DFS preorder of spanning tree of CFG
    84  	i++
    85  	lt.sdom[v.Index] = v
    86  	lt.link(nil, v)
    87  	for _, w := range v.Succs {
    88  		if lt.sdom[w.Index] == nil {
    89  			lt.parent[w.Index] = v
    90  			i = lt.dfs(w, i, preorder)
    91  		}
    92  	}
    93  	return i
    94  }
    95  
    96  // eval implements the EVAL part of the LT algorithm.
    97  func (lt *ltState) eval(v *BasicBlock) *BasicBlock {
    98  	// TODO(adonovan): opt: do path compression per simple LT.
    99  	u := v
   100  	for ; lt.ancestor[v.Index] != nil; v = lt.ancestor[v.Index] {
   101  		if lt.sdom[v.Index].dom.pre < lt.sdom[u.Index].dom.pre {
   102  			u = v
   103  		}
   104  	}
   105  	return u
   106  }
   107  
   108  // link implements the LINK part of the LT algorithm.
   109  func (lt *ltState) link(v, w *BasicBlock) {
   110  	lt.ancestor[w.Index] = v
   111  }
   112  
   113  // buildDomTree computes the dominator tree of f using the LT algorithm.
   114  // Precondition: all blocks are reachable (e.g. optimizeBlocks has been run).
   115  func buildDomTree(f *Function) {
   116  	// The step numbers refer to the original LT paper; the
   117  	// reordering is due to Georgiadis.
   118  
   119  	// Clear any previous domInfo.
   120  	for _, b := range f.Blocks {
   121  		b.dom = domInfo{}
   122  	}
   123  
   124  	n := len(f.Blocks)
   125  	// Allocate space for 5 contiguous [n]*BasicBlock arrays:
   126  	// sdom, parent, ancestor, preorder, buckets.
   127  	space := make([]*BasicBlock, 5*n)
   128  	lt := ltState{
   129  		sdom:     space[0:n],
   130  		parent:   space[n : 2*n],
   131  		ancestor: space[2*n : 3*n],
   132  	}
   133  
   134  	// Step 1.  Number vertices by depth-first preorder.
   135  	preorder := space[3*n : 4*n]
   136  	root := f.Blocks[0]
   137  	prenum := lt.dfs(root, 0, preorder)
   138  	recover := f.Recover
   139  	if recover != nil {
   140  		lt.dfs(recover, prenum, preorder)
   141  	}
   142  
   143  	buckets := space[4*n : 5*n]
   144  	copy(buckets, preorder)
   145  
   146  	// In reverse preorder...
   147  	for i := int32(n) - 1; i > 0; i-- {
   148  		w := preorder[i]
   149  
   150  		// Step 3. Implicitly define the immediate dominator of each node.
   151  		for v := buckets[i]; v != w; v = buckets[v.dom.pre] {
   152  			u := lt.eval(v)
   153  			if lt.sdom[u.Index].dom.pre < i {
   154  				v.dom.idom = u
   155  			} else {
   156  				v.dom.idom = w
   157  			}
   158  		}
   159  
   160  		// Step 2. Compute the semidominators of all nodes.
   161  		lt.sdom[w.Index] = lt.parent[w.Index]
   162  		for _, v := range w.Preds {
   163  			u := lt.eval(v)
   164  			if lt.sdom[u.Index].dom.pre < lt.sdom[w.Index].dom.pre {
   165  				lt.sdom[w.Index] = lt.sdom[u.Index]
   166  			}
   167  		}
   168  
   169  		lt.link(lt.parent[w.Index], w)
   170  
   171  		if lt.parent[w.Index] == lt.sdom[w.Index] {
   172  			w.dom.idom = lt.parent[w.Index]
   173  		} else {
   174  			buckets[i] = buckets[lt.sdom[w.Index].dom.pre]
   175  			buckets[lt.sdom[w.Index].dom.pre] = w
   176  		}
   177  	}
   178  
   179  	// The final 'Step 3' is now outside the loop.
   180  	for v := buckets[0]; v != root; v = buckets[v.dom.pre] {
   181  		v.dom.idom = root
   182  	}
   183  
   184  	// Step 4. Explicitly define the immediate dominator of each
   185  	// node, in preorder.
   186  	for _, w := range preorder[1:] {
   187  		if w == root || w == recover {
   188  			w.dom.idom = nil
   189  		} else {
   190  			if w.dom.idom != lt.sdom[w.Index] {
   191  				w.dom.idom = w.dom.idom.dom.idom
   192  			}
   193  			// Calculate Children relation as inverse of Idom.
   194  			w.dom.idom.dom.children = append(w.dom.idom.dom.children, w)
   195  		}
   196  	}
   197  
   198  	pre, post := numberDomTree(root, 0, 0)
   199  	if recover != nil {
   200  		numberDomTree(recover, pre, post)
   201  	}
   202  
   203  	// printDomTreeDot(os.Stderr, f)        // debugging
   204  	// printDomTreeText(os.Stderr, root, 0) // debugging
   205  
   206  	if f.Prog.mode&SanityCheckFunctions != 0 {
   207  		sanityCheckDomTree(f)
   208  	}
   209  }
   210  
   211  // numberDomTree sets the pre- and post-order numbers of a depth-first
   212  // traversal of the dominator tree rooted at v.  These are used to
   213  // answer dominance queries in constant time.
   214  func numberDomTree(v *BasicBlock, pre, post int32) (int32, int32) {
   215  	v.dom.pre = pre
   216  	pre++
   217  	for _, child := range v.dom.children {
   218  		pre, post = numberDomTree(child, pre, post)
   219  	}
   220  	v.dom.post = post
   221  	post++
   222  	return pre, post
   223  }
   224  
   225  // Testing utilities ----------------------------------------
   226  
   227  // sanityCheckDomTree checks the correctness of the dominator tree
   228  // computed by the LT algorithm by comparing against the dominance
   229  // relation computed by a naive Kildall-style forward dataflow
   230  // analysis (Algorithm 10.16 from the "Dragon" book).
   231  func sanityCheckDomTree(f *Function) {
   232  	n := len(f.Blocks)
   233  
   234  	// D[i] is the set of blocks that dominate f.Blocks[i],
   235  	// represented as a bit-set of block indices.
   236  	D := make([]big.Int, n)
   237  
   238  	one := big.NewInt(1)
   239  
   240  	// all is the set of all blocks; constant.
   241  	var all big.Int
   242  	all.Set(one).Lsh(&all, uint(n)).Sub(&all, one)
   243  
   244  	// Initialization.
   245  	for i, b := range f.Blocks {
   246  		if i == 0 || b == f.Recover {
   247  			// A root is dominated only by itself.
   248  			D[i].SetBit(&D[0], 0, 1)
   249  		} else {
   250  			// All other blocks are (initially) dominated
   251  			// by every block.
   252  			D[i].Set(&all)
   253  		}
   254  	}
   255  
   256  	// Iteration until fixed point.
   257  	for changed := true; changed; {
   258  		changed = false
   259  		for i, b := range f.Blocks {
   260  			if i == 0 || b == f.Recover {
   261  				continue
   262  			}
   263  			// Compute intersection across predecessors.
   264  			var x big.Int
   265  			x.Set(&all)
   266  			for _, pred := range b.Preds {
   267  				x.And(&x, &D[pred.Index])
   268  			}
   269  			x.SetBit(&x, i, 1) // a block always dominates itself.
   270  			if D[i].Cmp(&x) != 0 {
   271  				D[i].Set(&x)
   272  				changed = true
   273  			}
   274  		}
   275  	}
   276  
   277  	// Check the entire relation.  O(n^2).
   278  	// The Recover block (if any) must be treated specially so we skip it.
   279  	ok := true
   280  	for i := 0; i < n; i++ {
   281  		for j := 0; j < n; j++ {
   282  			b, c := f.Blocks[i], f.Blocks[j]
   283  			if c == f.Recover {
   284  				continue
   285  			}
   286  			actual := b.Dominates(c)
   287  			expected := D[j].Bit(i) == 1
   288  			if actual != expected {
   289  				fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected)
   290  				ok = false
   291  			}
   292  		}
   293  	}
   294  
   295  	preorder := f.DomPreorder()
   296  	for _, b := range f.Blocks {
   297  		if got := preorder[b.dom.pre]; got != b {
   298  			fmt.Fprintf(os.Stderr, "preorder[%d]==%s, want %s\n", b.dom.pre, got, b)
   299  			ok = false
   300  		}
   301  	}
   302  
   303  	if !ok {
   304  		panic("sanityCheckDomTree failed for " + f.String())
   305  	}
   306  
   307  }
   308  
   309  // Printing functions ----------------------------------------
   310  
   311  // printDomTreeText prints the dominator tree as text, using indentation.
   312  func printDomTreeText(buf *bytes.Buffer, v *BasicBlock, indent int) {
   313  	fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v)
   314  	for _, child := range v.dom.children {
   315  		printDomTreeText(buf, child, indent+1)
   316  	}
   317  }
   318  
   319  // printDomTreeDot prints the dominator tree of f in AT&T GraphViz
   320  // (.dot) format.
   321  func printDomTreeDot(buf *bytes.Buffer, f *Function) {
   322  	fmt.Fprintln(buf, "//", f)
   323  	fmt.Fprintln(buf, "digraph domtree {")
   324  	for i, b := range f.Blocks {
   325  		v := b.dom
   326  		fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post)
   327  		// TODO(adonovan): improve appearance of edges
   328  		// belonging to both dominator tree and CFG.
   329  
   330  		// Dominator tree edge.
   331  		if i != 0 {
   332  			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.dom.pre, v.pre)
   333  		}
   334  		// CFG edges.
   335  		for _, pred := range b.Preds {
   336  			fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.pre, v.pre)
   337  		}
   338  	}
   339  	fmt.Fprintln(buf, "}")
   340  }
   341  

View as plain text