// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package trie // Collision functions combine a left and right hand side (lhs and rhs) values // the two values are associated with the same key and produces the value that // will be stored for the key. // // Collision functions must be idempotent: // // collision(x, x) == x for all x. // // Collisions functions may be applied whenever a value is inserted // or two maps are merged, or intersected. type Collision func(lhs interface{}, rhs interface{}) interface{} // TakeLhs always returns the left value in a collision. func TakeLhs(lhs, rhs interface{}) interface{} { return lhs } // TakeRhs always returns the right hand side in a collision. func TakeRhs(lhs, rhs interface{}) interface{} { return rhs } // Builder creates new Map. Each Builder has a unique Scope. // // IMPORTANT: Nodes are hash-consed internally to reduce memory consumption. To // support hash-consing Builders keep an internal Map of all of the Maps that they // have created. To GC any of the Maps created by the Builder, all references to // the Builder must be dropped. This includes MutMaps. type Builder struct { scope Scope // hash-consing maps for each node type. empty *empty leaves map[leaf]*leaf branches map[branch]*branch // It may be possible to support more types of patricia tries // (e.g. non-hash-consed) by making Builder an interface and abstracting // the mkLeaf and mkBranch functions. } // NewBuilder creates a new Builder with a unique Scope. func NewBuilder() *Builder { s := newScope() return &Builder{ scope: s, empty: &empty{s}, leaves: make(map[leaf]*leaf), branches: make(map[branch]*branch), } } func (b *Builder) Scope() Scope { return b.scope } // Rescope changes the builder's scope to a new unique Scope. // // Any Maps created using the previous scope need to be Cloned // before any operation. // // This makes the old internals of the Builder eligible to be GC'ed. func (b *Builder) Rescope() { s := newScope() b.scope = s b.empty = &empty{s} b.leaves = make(map[leaf]*leaf) b.branches = make(map[branch]*branch) } // Empty is the empty map. func (b *Builder) Empty() Map { return Map{b.Scope(), b.empty} } // InsertWith inserts a new association from k to v into the Map m to create a new map // in the current scope and handle collisions using the collision function c. // // This is roughly corresponds to updating a map[uint64]interface{} by: // // if _, ok := m[k]; ok { m[k] = c(m[k], v} else { m[k] = v} // // An insertion or update happened whenever Insert(m, ...) != m . func (b *Builder) InsertWith(c Collision, m Map, k uint64, v interface{}) Map { m = b.Clone(m) return Map{b.Scope(), b.insert(c, m.n, b.mkLeaf(key(k), v), false)} } // Inserts a new association from key to value into the Map m to create // a new map in the current scope. // // If there was a previous value mapped by key, keep the previously mapped value. // This is roughly corresponds to updating a map[uint64]interface{} by: // // if _, ok := m[k]; ok { m[k] = val } // // This is equivalent to b.Merge(m, b.Create({k: v})). func (b *Builder) Insert(m Map, k uint64, v interface{}) Map { return b.InsertWith(TakeLhs, m, k, v) } // Updates a (key, value) in the map. This is roughly corresponds to // updating a map[uint64]interface{} by: // // m[key] = val func (b *Builder) Update(m Map, key uint64, val interface{}) Map { return b.InsertWith(TakeRhs, m, key, val) } // Merge two maps lhs and rhs to create a new map in the current scope. // // Whenever there is a key in both maps (a collision), the resulting value mapped by // the key will be `c(lhs[key], rhs[key])`. func (b *Builder) MergeWith(c Collision, lhs, rhs Map) Map { lhs, rhs = b.Clone(lhs), b.Clone(rhs) return Map{b.Scope(), b.merge(c, lhs.n, rhs.n)} } // Merge two maps lhs and rhs to create a new map in the current scope. // // Whenever there is a key in both maps (a collision), the resulting value mapped by // the key will be the value in lhs `b.Collision(lhs[key], rhs[key])`. func (b *Builder) Merge(lhs, rhs Map) Map { return b.MergeWith(TakeLhs, lhs, rhs) } // Clone returns a Map that contains the same (key, value) elements // within b.Scope(), i.e. return m if m.Scope() == b.Scope() or return // a deep copy of m within b.Scope() otherwise. func (b *Builder) Clone(m Map) Map { if m.Scope() == b.Scope() { return m } else if m.n == nil { return Map{b.Scope(), b.empty} } return Map{b.Scope(), b.clone(m.n)} } func (b *Builder) clone(n node) node { switch n := n.(type) { case *empty: return b.empty case *leaf: return b.mkLeaf(n.k, n.v) case *branch: return b.mkBranch(n.prefix, n.branching, b.clone(n.left), b.clone(n.right)) default: panic("unreachable") } } // Remove a key from a Map m and return the resulting Map. func (b *Builder) Remove(m Map, k uint64) Map { m = b.Clone(m) return Map{b.Scope(), b.remove(m.n, key(k))} } // Intersect Maps lhs and rhs and returns a map with all of the keys in // both lhs and rhs and the value comes from lhs, i.e. // // {(k, lhs[k]) | k in lhs, k in rhs}. func (b *Builder) Intersect(lhs, rhs Map) Map { return b.IntersectWith(TakeLhs, lhs, rhs) } // IntersectWith take lhs and rhs and returns the intersection // with the value coming from the collision function, i.e. // // {(k, c(lhs[k], rhs[k]) ) | k in lhs, k in rhs}. // // The elements of the resulting map are always { } // for each key k that a key in both lhs and rhs. func (b *Builder) IntersectWith(c Collision, lhs, rhs Map) Map { l, r := b.Clone(lhs), b.Clone(rhs) return Map{b.Scope(), b.intersect(c, l.n, r.n)} } // MutMap is a convenient wrapper for a Map and a *Builder that will be used to create // new Maps from it. type MutMap struct { B *Builder M Map } // MutEmpty is an empty MutMap for a builder. func (b *Builder) MutEmpty() MutMap { return MutMap{b, b.Empty()} } // Insert an element into the map using the collision function for the builder. // Returns true if the element was inserted. func (mm *MutMap) Insert(k uint64, v interface{}) bool { old := mm.M mm.M = mm.B.Insert(old, k, v) return old != mm.M } // Updates an element in the map. Returns true if the map was updated. func (mm *MutMap) Update(k uint64, v interface{}) bool { old := mm.M mm.M = mm.B.Update(old, k, v) return old != mm.M } // Removes a key from the map. Returns true if the element was removed. func (mm *MutMap) Remove(k uint64) bool { old := mm.M mm.M = mm.B.Remove(old, k) return old != mm.M } // Merge another map into the current one using the collision function // for the builder. Returns true if the map changed. func (mm *MutMap) Merge(other Map) bool { old := mm.M mm.M = mm.B.Merge(old, other) return old != mm.M } // Intersect another map into the current one using the collision function // for the builder. Returns true if the map changed. func (mm *MutMap) Intersect(other Map) bool { old := mm.M mm.M = mm.B.Intersect(old, other) return old != mm.M } func (b *Builder) Create(m map[uint64]interface{}) Map { var leaves []*leaf for k, v := range m { leaves = append(leaves, b.mkLeaf(key(k), v)) } return Map{b.Scope(), b.create(leaves)} } // Merge another map into the current one using the collision function // for the builder. Returns true if the map changed. func (mm *MutMap) MergeWith(c Collision, other Map) bool { old := mm.M mm.M = mm.B.MergeWith(c, old, other) return old != mm.M } // creates a map for a collection of leaf nodes. func (b *Builder) create(leaves []*leaf) node { n := len(leaves) if n == 0 { return b.empty } else if n == 1 { return leaves[0] } // Note: we can do a more sophisicated algorithm by: // - sorting the leaves ahead of time, // - taking the prefix and branching bit of the min and max key, // - binary searching for the branching bit, // - splitting exactly where the branch will be, and // - making the branch node for this prefix + branching bit. // Skipping until this is a performance bottleneck. m := n / 2 // (n >= 2) ==> 1 <= m < n l, r := leaves[:m], leaves[m:] return b.merge(nil, b.create(l), b.create(r)) } // mkLeaf returns the hash-consed representative of (k, v) in the current scope. func (b *Builder) mkLeaf(k key, v interface{}) *leaf { l := &leaf{k: k, v: v} if rep, ok := b.leaves[*l]; ok { return rep } b.leaves[*l] = l return l } // mkBranch returns the hash-consed representative of the tuple // // (prefix, branch, left, right) // // in the current scope. func (b *Builder) mkBranch(p prefix, bp bitpos, left node, right node) *branch { br := &branch{ sz: left.size() + right.size(), prefix: p, branching: bp, left: left, right: right, } if rep, ok := b.branches[*br]; ok { return rep } b.branches[*br] = br return br } // join two maps with prefixes p0 and p1 that are *known* to disagree. func (b *Builder) join(p0 prefix, t0 node, p1 prefix, t1 node) *branch { m := branchingBit(p0, p1) var left, right node if zeroBit(p0, m) { left, right = t0, t1 } else { left, right = t1, t0 } prefix := mask(p0, m) return b.mkBranch(prefix, m, left, right) } // collide two leaves with the same key to create a leaf // with the collided value. func (b *Builder) collide(c Collision, left, right *leaf) *leaf { if left == right { return left // c is idempotent: c(x, x) == x } val := left.v // keep the left value by default if c is nil if c != nil { val = c(left.v, right.v) } switch val { case left.v: return left case right.v: return right default: return b.mkLeaf(left.k, val) } } // inserts a leaf l into a map m and returns the resulting map. // When lhs is true, l is the left hand side in a collision. // Both l and m are in the current scope. func (b *Builder) insert(c Collision, m node, l *leaf, lhs bool) node { switch m := m.(type) { case *empty: return l case *leaf: if m.k == l.k { left, right := l, m if !lhs { left, right = right, left } return b.collide(c, left, right) } return b.join(prefix(l.k), l, prefix(m.k), m) case *branch: // fallthrough } // m is a branch br := m.(*branch) if !matchPrefix(prefix(l.k), br.prefix, br.branching) { return b.join(prefix(l.k), l, br.prefix, br) } var left, right node if zeroBit(prefix(l.k), br.branching) { left, right = b.insert(c, br.left, l, lhs), br.right } else { left, right = br.left, b.insert(c, br.right, l, lhs) } if left == br.left && right == br.right { return m } return b.mkBranch(br.prefix, br.branching, left, right) } // merge two maps in the current scope. func (b *Builder) merge(c Collision, lhs, rhs node) node { if lhs == rhs { return lhs } switch lhs := lhs.(type) { case *empty: return rhs case *leaf: return b.insert(c, rhs, lhs, true) case *branch: switch rhs := rhs.(type) { case *empty: return lhs case *leaf: return b.insert(c, lhs, rhs, false) case *branch: // fallthrough } } // Last remaining case is branch merging. // For brevity, we adopt the Okasaki and Gill naming conventions // for branching and prefixes. s, t := lhs.(*branch), rhs.(*branch) p, m := s.prefix, s.branching q, n := t.prefix, t.branching if m == n && p == q { // prefixes are identical. left, right := b.merge(c, s.left, t.left), b.merge(c, s.right, t.right) return b.mkBranch(p, m, left, right) } if !prefixesOverlap(p, m, q, n) { return b.join(p, s, q, t) // prefixes are disjoint. } // prefixesOverlap(p, m, q, n) && !(m ==n && p == q) // By prefixesOverlap(...), either: // higher(m, n) && matchPrefix(q, p, m), or // higher(n, m) && matchPrefix(p, q, n) // So either s or t may can be merged with one branch or the other. switch { case ord(m, n) && zeroBit(q, m): return b.mkBranch(p, m, b.merge(c, s.left, t), s.right) case ord(m, n) && !zeroBit(q, m): return b.mkBranch(p, m, s.left, b.merge(c, s.right, t)) case ord(n, m) && zeroBit(p, n): return b.mkBranch(q, n, b.merge(c, s, t.left), t.right) default: return b.mkBranch(q, n, t.left, b.merge(c, s, t.right)) } } func (b *Builder) remove(m node, k key) node { switch m := m.(type) { case *empty: return m case *leaf: if m.k == k { return b.empty } return m case *branch: // fallthrough } br := m.(*branch) kp := prefix(k) if !matchPrefix(kp, br.prefix, br.branching) { // The prefix does not match. kp is not in br. return br } // the prefix matches. try to remove from the left or right branch. left, right := br.left, br.right if zeroBit(kp, br.branching) { left = b.remove(left, k) // k may be in the left branch. } else { right = b.remove(right, k) // k may be in the right branch. } if left == br.left && right == br.right { return br // no update } else if _, ok := left.(*empty); ok { return right // left updated and is empty. } else if _, ok := right.(*empty); ok { return left // right updated and is empty. } // Either left or right updated. Both left and right are not empty. // The left and right branches still share the same prefix and disagree // on the same branching bit. It is safe to directly create the branch. return b.mkBranch(br.prefix, br.branching, left, right) } func (b *Builder) intersect(c Collision, l, r node) node { if l == r { return l } switch l := l.(type) { case *empty: return b.empty case *leaf: if rleaf := r.find(l.k); rleaf != nil { return b.collide(c, l, rleaf) } return b.empty case *branch: switch r := r.(type) { case *empty: return b.empty case *leaf: if lleaf := l.find(r.k); lleaf != nil { return b.collide(c, lleaf, r) } return b.empty case *branch: // fallthrough } } // Last remaining case is branch intersection. s, t := l.(*branch), r.(*branch) p, m := s.prefix, s.branching q, n := t.prefix, t.branching if m == n && p == q { // prefixes are identical. left, right := b.intersect(c, s.left, t.left), b.intersect(c, s.right, t.right) if _, ok := left.(*empty); ok { return right } else if _, ok := right.(*empty); ok { return left } // The left and right branches are both non-empty. // They still share the same prefix and disagree on the same branching bit. // It is safe to directly create the branch. return b.mkBranch(p, m, left, right) } if !prefixesOverlap(p, m, q, n) { return b.empty // The prefixes share no keys. } // prefixesOverlap(p, m, q, n) && !(m ==n && p == q) // By prefixesOverlap(...), either: // ord(m, n) && matchPrefix(q, p, m), or // ord(n, m) && matchPrefix(p, q, n) // So either s or t may be a strict subtree of the other. var lhs, rhs node switch { case ord(m, n) && zeroBit(q, m): lhs, rhs = s.left, t case ord(m, n) && !zeroBit(q, m): lhs, rhs = s.right, t case ord(n, m) && zeroBit(p, n): lhs, rhs = s, t.left default: lhs, rhs = s, t.right } return b.intersect(c, lhs, rhs) }