// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package checker defines the implementation of the checker commands. // The same code drives the multi-analysis driver, the single-analysis // driver that is conventionally provided for convenience along with // each analysis package, and the test driver. package checker import ( "bytes" "encoding/gob" "errors" "flag" "fmt" "go/format" "go/token" "go/types" "log" "os" "reflect" "runtime" "runtime/pprof" "runtime/trace" "sort" "strings" "sync" "time" "golang.org/x/tools/go/analysis" "golang.org/x/tools/go/analysis/internal/analysisflags" "golang.org/x/tools/go/packages" "golang.org/x/tools/internal/analysisinternal" "golang.org/x/tools/internal/diff" "golang.org/x/tools/internal/robustio" ) var ( // Debug is a set of single-letter flags: // // f show [f]acts as they are created // p disable [p]arallel execution of analyzers // s do additional [s]anity checks on fact types and serialization // t show [t]iming info (NB: use 'p' flag to avoid GC/scheduler noise) // v show [v]erbose logging // Debug = "" // Log files for optional performance tracing. CPUProfile, MemProfile, Trace string // IncludeTests indicates whether test files should be analyzed too. IncludeTests = true // Fix determines whether to apply all suggested fixes. Fix bool ) // RegisterFlags registers command-line flags used by the analysis driver. func RegisterFlags() { // When adding flags here, remember to update // the list of suppressed flags in analysisflags. flag.StringVar(&Debug, "debug", Debug, `debug flags, any subset of "fpstv"`) flag.StringVar(&CPUProfile, "cpuprofile", "", "write CPU profile to this file") flag.StringVar(&MemProfile, "memprofile", "", "write memory profile to this file") flag.StringVar(&Trace, "trace", "", "write trace log to this file") flag.BoolVar(&IncludeTests, "test", IncludeTests, "indicates whether test files should be analyzed, too") flag.BoolVar(&Fix, "fix", false, "apply all suggested fixes") } // Run loads the packages specified by args using go/packages, // then applies the specified analyzers to them. // Analysis flags must already have been set. // Analyzers must be valid according to [analysis.Validate]. // It provides most of the logic for the main functions of both the // singlechecker and the multi-analysis commands. // It returns the appropriate exit code. func Run(args []string, analyzers []*analysis.Analyzer) (exitcode int) { if CPUProfile != "" { f, err := os.Create(CPUProfile) if err != nil { log.Fatal(err) } if err := pprof.StartCPUProfile(f); err != nil { log.Fatal(err) } // NB: profile won't be written in case of error. defer pprof.StopCPUProfile() } if Trace != "" { f, err := os.Create(Trace) if err != nil { log.Fatal(err) } if err := trace.Start(f); err != nil { log.Fatal(err) } // NB: trace log won't be written in case of error. defer func() { trace.Stop() log.Printf("To view the trace, run:\n$ go tool trace view %s", Trace) }() } if MemProfile != "" { f, err := os.Create(MemProfile) if err != nil { log.Fatal(err) } // NB: memprofile won't be written in case of error. defer func() { runtime.GC() // get up-to-date statistics if err := pprof.WriteHeapProfile(f); err != nil { log.Fatalf("Writing memory profile: %v", err) } f.Close() }() } // Load the packages. if dbg('v') { log.SetPrefix("") log.SetFlags(log.Lmicroseconds) // display timing log.Printf("load %s", args) } // Optimization: if the selected analyzers don't produce/consume // facts, we need source only for the initial packages. allSyntax := needFacts(analyzers) initial, err := load(args, allSyntax) if err != nil { if _, ok := err.(typeParseError); !ok { // Fail when some of the errors are not // related to parsing nor typing. log.Print(err) return 1 } // TODO: filter analyzers based on RunDespiteError? } // Run the analysis. roots := analyze(initial, analyzers) // Apply fixes. if Fix { if err := applyFixes(roots); err != nil { // Fail when applying fixes failed. log.Print(err) return 1 } } // Print the results. return printDiagnostics(roots) } // typeParseError represents a package load error // that is related to typing and parsing. type typeParseError struct { error } // load loads the initial packages. If all loading issues are related to // typing and parsing, the returned error is of type typeParseError. func load(patterns []string, allSyntax bool) ([]*packages.Package, error) { mode := packages.LoadSyntax if allSyntax { mode = packages.LoadAllSyntax } mode |= packages.NeedModule conf := packages.Config{ Mode: mode, Tests: IncludeTests, } initial, err := packages.Load(&conf, patterns...) if err == nil { if len(initial) == 0 { err = fmt.Errorf("%s matched no packages", strings.Join(patterns, " ")) } else { err = loadingError(initial) } } return initial, err } // loadingError checks for issues during the loading of initial // packages. Returns nil if there are no issues. Returns error // of type typeParseError if all errors, including those in // dependencies, are related to typing or parsing. Otherwise, // a plain error is returned with an appropriate message. func loadingError(initial []*packages.Package) error { var err error if n := packages.PrintErrors(initial); n > 1 { err = fmt.Errorf("%d errors during loading", n) } else if n == 1 { err = errors.New("error during loading") } else { // no errors return nil } all := true packages.Visit(initial, nil, func(pkg *packages.Package) { for _, err := range pkg.Errors { typeOrParse := err.Kind == packages.TypeError || err.Kind == packages.ParseError all = all && typeOrParse } }) if all { return typeParseError{err} } return err } // TestAnalyzer applies an analyzer to a set of packages (and their // dependencies if necessary) and returns the results. // The analyzer must be valid according to [analysis.Validate]. // // Facts about pkg are returned in a map keyed by object; package facts // have a nil key. // // This entry point is used only by analysistest. func TestAnalyzer(a *analysis.Analyzer, pkgs []*packages.Package) []*TestAnalyzerResult { var results []*TestAnalyzerResult for _, act := range analyze(pkgs, []*analysis.Analyzer{a}) { facts := make(map[types.Object][]analysis.Fact) for key, fact := range act.objectFacts { if key.obj.Pkg() == act.pass.Pkg { facts[key.obj] = append(facts[key.obj], fact) } } for key, fact := range act.packageFacts { if key.pkg == act.pass.Pkg { facts[nil] = append(facts[nil], fact) } } results = append(results, &TestAnalyzerResult{act.pass, act.diagnostics, facts, act.result, act.err}) } return results } type TestAnalyzerResult struct { Pass *analysis.Pass Diagnostics []analysis.Diagnostic Facts map[types.Object][]analysis.Fact Result interface{} Err error } func analyze(pkgs []*packages.Package, analyzers []*analysis.Analyzer) []*action { // Construct the action graph. if dbg('v') { log.Printf("building graph of analysis passes") } // Each graph node (action) is one unit of analysis. // Edges express package-to-package (vertical) dependencies, // and analysis-to-analysis (horizontal) dependencies. type key struct { *analysis.Analyzer *packages.Package } actions := make(map[key]*action) var mkAction func(a *analysis.Analyzer, pkg *packages.Package) *action mkAction = func(a *analysis.Analyzer, pkg *packages.Package) *action { k := key{a, pkg} act, ok := actions[k] if !ok { act = &action{a: a, pkg: pkg} // Add a dependency on each required analyzers. for _, req := range a.Requires { act.deps = append(act.deps, mkAction(req, pkg)) } // An analysis that consumes/produces facts // must run on the package's dependencies too. if len(a.FactTypes) > 0 { paths := make([]string, 0, len(pkg.Imports)) for path := range pkg.Imports { paths = append(paths, path) } sort.Strings(paths) // for determinism for _, path := range paths { dep := mkAction(a, pkg.Imports[path]) act.deps = append(act.deps, dep) } } actions[k] = act } return act } // Build nodes for initial packages. var roots []*action for _, a := range analyzers { for _, pkg := range pkgs { root := mkAction(a, pkg) root.isroot = true roots = append(roots, root) } } // Execute the graph in parallel. execAll(roots) return roots } func applyFixes(roots []*action) error { // visit all of the actions and accumulate the suggested edits. paths := make(map[robustio.FileID]string) editsByAction := make(map[robustio.FileID]map[*action][]diff.Edit) visited := make(map[*action]bool) var apply func(*action) error var visitAll func(actions []*action) error visitAll = func(actions []*action) error { for _, act := range actions { if !visited[act] { visited[act] = true if err := visitAll(act.deps); err != nil { return err } if err := apply(act); err != nil { return err } } } return nil } apply = func(act *action) error { editsForTokenFile := make(map[*token.File][]diff.Edit) for _, diag := range act.diagnostics { for _, sf := range diag.SuggestedFixes { for _, edit := range sf.TextEdits { // Validate the edit. // Any error here indicates a bug in the analyzer. start, end := edit.Pos, edit.End file := act.pkg.Fset.File(start) if file == nil { return fmt.Errorf("analysis %q suggests invalid fix: missing file info for pos (%v)", act.a.Name, start) } if !end.IsValid() { end = start } if start > end { return fmt.Errorf("analysis %q suggests invalid fix: pos (%v) > end (%v)", act.a.Name, start, end) } if eof := token.Pos(file.Base() + file.Size()); end > eof { return fmt.Errorf("analysis %q suggests invalid fix: end (%v) past end of file (%v)", act.a.Name, end, eof) } edit := diff.Edit{ Start: file.Offset(start), End: file.Offset(end), New: string(edit.NewText), } editsForTokenFile[file] = append(editsForTokenFile[file], edit) } } } for f, edits := range editsForTokenFile { id, _, err := robustio.GetFileID(f.Name()) if err != nil { return err } if _, hasId := paths[id]; !hasId { paths[id] = f.Name() editsByAction[id] = make(map[*action][]diff.Edit) } editsByAction[id][act] = edits } return nil } if err := visitAll(roots); err != nil { return err } // Validate and group the edits to each actual file. editsByPath := make(map[string][]diff.Edit) for id, actToEdits := range editsByAction { path := paths[id] actions := make([]*action, 0, len(actToEdits)) for act := range actToEdits { actions = append(actions, act) } // Does any action create conflicting edits? for _, act := range actions { edits := actToEdits[act] if _, invalid := validateEdits(edits); invalid > 0 { name, x, y := act.a.Name, edits[invalid-1], edits[invalid] return diff3Conflict(path, name, name, []diff.Edit{x}, []diff.Edit{y}) } } // Does any pair of different actions create edits that conflict? for j := range actions { for k := range actions[:j] { x, y := actions[j], actions[k] if x.a.Name > y.a.Name { x, y = y, x } xedits, yedits := actToEdits[x], actToEdits[y] combined := append(xedits, yedits...) if _, invalid := validateEdits(combined); invalid > 0 { // TODO: consider applying each action's consistent list of edits entirely, // and then using a three-way merge (such as GNU diff3) on the resulting // files to report more precisely the parts that actually conflict. return diff3Conflict(path, x.a.Name, y.a.Name, xedits, yedits) } } } var edits []diff.Edit for act := range actToEdits { edits = append(edits, actToEdits[act]...) } editsByPath[path], _ = validateEdits(edits) // remove duplicates. already validated. } // Now we've got a set of valid edits for each file. Apply them. for path, edits := range editsByPath { // TODO(adonovan): this should really work on the same // gulp from the file system that fed the analyzer (see #62292). contents, err := os.ReadFile(path) if err != nil { return err } out, err := diff.ApplyBytes(contents, edits) if err != nil { return err } // Try to format the file. if formatted, err := format.Source(out); err == nil { out = formatted } if err := os.WriteFile(path, out, 0644); err != nil { return err } } return nil } // validateEdits returns a list of edits that is sorted and // contains no duplicate edits. Returns the index of some // overlapping adjacent edits if there is one and <0 if the // edits are valid. func validateEdits(edits []diff.Edit) ([]diff.Edit, int) { if len(edits) == 0 { return nil, -1 } equivalent := func(x, y diff.Edit) bool { return x.Start == y.Start && x.End == y.End && x.New == y.New } diff.SortEdits(edits) unique := []diff.Edit{edits[0]} invalid := -1 for i := 1; i < len(edits); i++ { prev, cur := edits[i-1], edits[i] // We skip over equivalent edits without considering them // an error. This handles identical edits coming from the // multiple ways of loading a package into a // *go/packages.Packages for testing, e.g. packages "p" and "p [p.test]". if !equivalent(prev, cur) { unique = append(unique, cur) if prev.End > cur.Start { invalid = i } } } return unique, invalid } // diff3Conflict returns an error describing two conflicting sets of // edits on a file at path. func diff3Conflict(path string, xlabel, ylabel string, xedits, yedits []diff.Edit) error { contents, err := os.ReadFile(path) if err != nil { return err } oldlabel, old := "base", string(contents) xdiff, err := diff.ToUnified(oldlabel, xlabel, old, xedits, diff.DefaultContextLines) if err != nil { return err } ydiff, err := diff.ToUnified(oldlabel, ylabel, old, yedits, diff.DefaultContextLines) if err != nil { return err } return fmt.Errorf("conflicting edits from %s and %s on %s\nfirst edits:\n%s\nsecond edits:\n%s", xlabel, ylabel, path, xdiff, ydiff) } // printDiagnostics prints the diagnostics for the root packages in either // plain text or JSON format. JSON format also includes errors for any // dependencies. // // It returns the exitcode: in plain mode, 0 for success, 1 for analysis // errors, and 3 for diagnostics. We avoid 2 since the flag package uses // it. JSON mode always succeeds at printing errors and diagnostics in a // structured form to stdout. func printDiagnostics(roots []*action) (exitcode int) { // Print the output. // // Print diagnostics only for root packages, // but errors for all packages. printed := make(map[*action]bool) var print func(*action) var visitAll func(actions []*action) visitAll = func(actions []*action) { for _, act := range actions { if !printed[act] { printed[act] = true visitAll(act.deps) print(act) } } } if analysisflags.JSON { // JSON output tree := make(analysisflags.JSONTree) print = func(act *action) { var diags []analysis.Diagnostic if act.isroot { diags = act.diagnostics } tree.Add(act.pkg.Fset, act.pkg.ID, act.a.Name, diags, act.err) } visitAll(roots) tree.Print() } else { // plain text output // De-duplicate diagnostics by position (not token.Pos) to // avoid double-reporting in source files that belong to // multiple packages, such as foo and foo.test. type key struct { pos token.Position end token.Position *analysis.Analyzer message string } seen := make(map[key]bool) print = func(act *action) { if act.err != nil { fmt.Fprintf(os.Stderr, "%s: %v\n", act.a.Name, act.err) exitcode = 1 // analysis failed, at least partially return } if act.isroot { for _, diag := range act.diagnostics { // We don't display a.Name/f.Category // as most users don't care. posn := act.pkg.Fset.Position(diag.Pos) end := act.pkg.Fset.Position(diag.End) k := key{posn, end, act.a, diag.Message} if seen[k] { continue // duplicate } seen[k] = true analysisflags.PrintPlain(act.pkg.Fset, diag) } } } visitAll(roots) if exitcode == 0 && len(seen) > 0 { exitcode = 3 // successfully produced diagnostics } } // Print timing info. if dbg('t') { if !dbg('p') { log.Println("Warning: times are mostly GC/scheduler noise; use -debug=tp to disable parallelism") } var all []*action var total time.Duration for act := range printed { all = append(all, act) total += act.duration } sort.Slice(all, func(i, j int) bool { return all[i].duration > all[j].duration }) // Print actions accounting for 90% of the total. var sum time.Duration for _, act := range all { fmt.Fprintf(os.Stderr, "%s\t%s\n", act.duration, act) sum += act.duration if sum >= total*9/10 { break } } } return exitcode } // needFacts reports whether any analysis required by the specified set // needs facts. If so, we must load the entire program from source. func needFacts(analyzers []*analysis.Analyzer) bool { seen := make(map[*analysis.Analyzer]bool) var q []*analysis.Analyzer // for BFS q = append(q, analyzers...) for len(q) > 0 { a := q[0] q = q[1:] if !seen[a] { seen[a] = true if len(a.FactTypes) > 0 { return true } q = append(q, a.Requires...) } } return false } // An action represents one unit of analysis work: the application of // one analysis to one package. Actions form a DAG, both within a // package (as different analyzers are applied, either in sequence or // parallel), and across packages (as dependencies are analyzed). type action struct { once sync.Once a *analysis.Analyzer pkg *packages.Package pass *analysis.Pass isroot bool deps []*action objectFacts map[objectFactKey]analysis.Fact packageFacts map[packageFactKey]analysis.Fact result interface{} diagnostics []analysis.Diagnostic err error duration time.Duration } type objectFactKey struct { obj types.Object typ reflect.Type } type packageFactKey struct { pkg *types.Package typ reflect.Type } func (act *action) String() string { return fmt.Sprintf("%s@%s", act.a, act.pkg) } func execAll(actions []*action) { sequential := dbg('p') var wg sync.WaitGroup for _, act := range actions { wg.Add(1) work := func(act *action) { act.exec() wg.Done() } if sequential { work(act) } else { go work(act) } } wg.Wait() } func (act *action) exec() { act.once.Do(act.execOnce) } func (act *action) execOnce() { // Analyze dependencies. execAll(act.deps) // TODO(adonovan): uncomment this during profiling. // It won't build pre-go1.11 but conditional compilation // using build tags isn't warranted. // // ctx, task := trace.NewTask(context.Background(), "exec") // trace.Log(ctx, "pass", act.String()) // defer task.End() // Record time spent in this node but not its dependencies. // In parallel mode, due to GC/scheduler contention, the // time is 5x higher than in sequential mode, even with a // semaphore limiting the number of threads here. // So use -debug=tp. if dbg('t') { t0 := time.Now() defer func() { act.duration = time.Since(t0) }() } // Report an error if any dependency failed. var failed []string for _, dep := range act.deps { if dep.err != nil { failed = append(failed, dep.String()) } } if failed != nil { sort.Strings(failed) act.err = fmt.Errorf("failed prerequisites: %s", strings.Join(failed, ", ")) return } // Plumb the output values of the dependencies // into the inputs of this action. Also facts. inputs := make(map[*analysis.Analyzer]interface{}) act.objectFacts = make(map[objectFactKey]analysis.Fact) act.packageFacts = make(map[packageFactKey]analysis.Fact) for _, dep := range act.deps { if dep.pkg == act.pkg { // Same package, different analysis (horizontal edge): // in-memory outputs of prerequisite analyzers // become inputs to this analysis pass. inputs[dep.a] = dep.result } else if dep.a == act.a { // (always true) // Same analysis, different package (vertical edge): // serialized facts produced by prerequisite analysis // become available to this analysis pass. inheritFacts(act, dep) } } // Run the analysis. pass := &analysis.Pass{ Analyzer: act.a, Fset: act.pkg.Fset, Files: act.pkg.Syntax, OtherFiles: act.pkg.OtherFiles, IgnoredFiles: act.pkg.IgnoredFiles, Pkg: act.pkg.Types, TypesInfo: act.pkg.TypesInfo, TypesSizes: act.pkg.TypesSizes, TypeErrors: act.pkg.TypeErrors, ResultOf: inputs, Report: func(d analysis.Diagnostic) { act.diagnostics = append(act.diagnostics, d) }, ImportObjectFact: act.importObjectFact, ExportObjectFact: act.exportObjectFact, ImportPackageFact: act.importPackageFact, ExportPackageFact: act.exportPackageFact, AllObjectFacts: act.allObjectFacts, AllPackageFacts: act.allPackageFacts, } pass.ReadFile = analysisinternal.MakeReadFile(pass) act.pass = pass var err error if act.pkg.IllTyped && !pass.Analyzer.RunDespiteErrors { err = fmt.Errorf("analysis skipped due to errors in package") } else { act.result, err = pass.Analyzer.Run(pass) if err == nil { if got, want := reflect.TypeOf(act.result), pass.Analyzer.ResultType; got != want { err = fmt.Errorf( "internal error: on package %s, analyzer %s returned a result of type %v, but declared ResultType %v", pass.Pkg.Path(), pass.Analyzer, got, want) } } } if err == nil { // resolve diagnostic URLs for i := range act.diagnostics { if url, uerr := analysisflags.ResolveURL(act.a, act.diagnostics[i]); uerr == nil { act.diagnostics[i].URL = url } else { err = uerr // keep the last error } } } act.err = err // disallow calls after Run pass.ExportObjectFact = nil pass.ExportPackageFact = nil } // inheritFacts populates act.facts with // those it obtains from its dependency, dep. func inheritFacts(act, dep *action) { serialize := dbg('s') for key, fact := range dep.objectFacts { // Filter out facts related to objects // that are irrelevant downstream // (equivalently: not in the compiler export data). if !exportedFrom(key.obj, dep.pkg.Types) { if false { log.Printf("%v: discarding %T fact from %s for %s: %s", act, fact, dep, key.obj, fact) } continue } // Optionally serialize/deserialize fact // to verify that it works across address spaces. if serialize { encodedFact, err := codeFact(fact) if err != nil { log.Panicf("internal error: encoding of %T fact failed in %v: %v", fact, act, err) } fact = encodedFact } if false { log.Printf("%v: inherited %T fact for %s: %s", act, fact, key.obj, fact) } act.objectFacts[key] = fact } for key, fact := range dep.packageFacts { // TODO: filter out facts that belong to // packages not mentioned in the export data // to prevent side channels. // Optionally serialize/deserialize fact // to verify that it works across address spaces // and is deterministic. if serialize { encodedFact, err := codeFact(fact) if err != nil { log.Panicf("internal error: encoding of %T fact failed in %v", fact, act) } fact = encodedFact } if false { log.Printf("%v: inherited %T fact for %s: %s", act, fact, key.pkg.Path(), fact) } act.packageFacts[key] = fact } } // codeFact encodes then decodes a fact, // just to exercise that logic. func codeFact(fact analysis.Fact) (analysis.Fact, error) { // We encode facts one at a time. // A real modular driver would emit all facts // into one encoder to improve gob efficiency. var buf bytes.Buffer if err := gob.NewEncoder(&buf).Encode(fact); err != nil { return nil, err } // Encode it twice and assert that we get the same bits. // This helps detect nondeterministic Gob encoding (e.g. of maps). var buf2 bytes.Buffer if err := gob.NewEncoder(&buf2).Encode(fact); err != nil { return nil, err } if !bytes.Equal(buf.Bytes(), buf2.Bytes()) { return nil, fmt.Errorf("encoding of %T fact is nondeterministic", fact) } new := reflect.New(reflect.TypeOf(fact).Elem()).Interface().(analysis.Fact) if err := gob.NewDecoder(&buf).Decode(new); err != nil { return nil, err } return new, nil } // exportedFrom reports whether obj may be visible to a package that imports pkg. // This includes not just the exported members of pkg, but also unexported // constants, types, fields, and methods, perhaps belonging to other packages, // that find there way into the API. // This is an overapproximation of the more accurate approach used by // gc export data, which walks the type graph, but it's much simpler. // // TODO(adonovan): do more accurate filtering by walking the type graph. func exportedFrom(obj types.Object, pkg *types.Package) bool { switch obj := obj.(type) { case *types.Func: return obj.Exported() && obj.Pkg() == pkg || obj.Type().(*types.Signature).Recv() != nil case *types.Var: if obj.IsField() { return true } // we can't filter more aggressively than this because we need // to consider function parameters exported, but have no way // of telling apart function parameters from local variables. return obj.Pkg() == pkg case *types.TypeName, *types.Const: return true } return false // Nil, Builtin, Label, or PkgName } // importObjectFact implements Pass.ImportObjectFact. // Given a non-nil pointer ptr of type *T, where *T satisfies Fact, // importObjectFact copies the fact value to *ptr. func (act *action) importObjectFact(obj types.Object, ptr analysis.Fact) bool { if obj == nil { panic("nil object") } key := objectFactKey{obj, factType(ptr)} if v, ok := act.objectFacts[key]; ok { reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem()) return true } return false } // exportObjectFact implements Pass.ExportObjectFact. func (act *action) exportObjectFact(obj types.Object, fact analysis.Fact) { if act.pass.ExportObjectFact == nil { log.Panicf("%s: Pass.ExportObjectFact(%s, %T) called after Run", act, obj, fact) } if obj.Pkg() != act.pkg.Types { log.Panicf("internal error: in analysis %s of package %s: Fact.Set(%s, %T): can't set facts on objects belonging another package", act.a, act.pkg, obj, fact) } key := objectFactKey{obj, factType(fact)} act.objectFacts[key] = fact // clobber any existing entry if dbg('f') { objstr := types.ObjectString(obj, (*types.Package).Name) fmt.Fprintf(os.Stderr, "%s: object %s has fact %s\n", act.pkg.Fset.Position(obj.Pos()), objstr, fact) } } // allObjectFacts implements Pass.AllObjectFacts. func (act *action) allObjectFacts() []analysis.ObjectFact { facts := make([]analysis.ObjectFact, 0, len(act.objectFacts)) for k := range act.objectFacts { facts = append(facts, analysis.ObjectFact{Object: k.obj, Fact: act.objectFacts[k]}) } return facts } // importPackageFact implements Pass.ImportPackageFact. // Given a non-nil pointer ptr of type *T, where *T satisfies Fact, // fact copies the fact value to *ptr. func (act *action) importPackageFact(pkg *types.Package, ptr analysis.Fact) bool { if pkg == nil { panic("nil package") } key := packageFactKey{pkg, factType(ptr)} if v, ok := act.packageFacts[key]; ok { reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem()) return true } return false } // exportPackageFact implements Pass.ExportPackageFact. func (act *action) exportPackageFact(fact analysis.Fact) { if act.pass.ExportPackageFact == nil { log.Panicf("%s: Pass.ExportPackageFact(%T) called after Run", act, fact) } key := packageFactKey{act.pass.Pkg, factType(fact)} act.packageFacts[key] = fact // clobber any existing entry if dbg('f') { fmt.Fprintf(os.Stderr, "%s: package %s has fact %s\n", act.pkg.Fset.Position(act.pass.Files[0].Pos()), act.pass.Pkg.Path(), fact) } } func factType(fact analysis.Fact) reflect.Type { t := reflect.TypeOf(fact) if t.Kind() != reflect.Ptr { log.Fatalf("invalid Fact type: got %T, want pointer", fact) } return t } // allPackageFacts implements Pass.AllPackageFacts. func (act *action) allPackageFacts() []analysis.PackageFact { facts := make([]analysis.PackageFact, 0, len(act.packageFacts)) for k := range act.packageFacts { facts = append(facts, analysis.PackageFact{Package: k.pkg, Fact: act.packageFacts[k]}) } return facts } func dbg(b byte) bool { return strings.IndexByte(Debug, b) >= 0 }