...

Source file src/golang.org/x/crypto/ssh/keys.go

Documentation: golang.org/x/crypto/ssh

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssh
     6  
     7  import (
     8  	"bytes"
     9  	"crypto"
    10  	"crypto/aes"
    11  	"crypto/cipher"
    12  	"crypto/dsa"
    13  	"crypto/ecdsa"
    14  	"crypto/ed25519"
    15  	"crypto/elliptic"
    16  	"crypto/md5"
    17  	"crypto/rand"
    18  	"crypto/rsa"
    19  	"crypto/sha256"
    20  	"crypto/x509"
    21  	"encoding/asn1"
    22  	"encoding/base64"
    23  	"encoding/binary"
    24  	"encoding/hex"
    25  	"encoding/pem"
    26  	"errors"
    27  	"fmt"
    28  	"io"
    29  	"math/big"
    30  	"strings"
    31  
    32  	"golang.org/x/crypto/ssh/internal/bcrypt_pbkdf"
    33  )
    34  
    35  // Public key algorithms names. These values can appear in PublicKey.Type,
    36  // ClientConfig.HostKeyAlgorithms, Signature.Format, or as AlgorithmSigner
    37  // arguments.
    38  const (
    39  	KeyAlgoRSA        = "ssh-rsa"
    40  	KeyAlgoDSA        = "ssh-dss"
    41  	KeyAlgoECDSA256   = "ecdsa-sha2-nistp256"
    42  	KeyAlgoSKECDSA256 = "sk-ecdsa-sha2-nistp256@openssh.com"
    43  	KeyAlgoECDSA384   = "ecdsa-sha2-nistp384"
    44  	KeyAlgoECDSA521   = "ecdsa-sha2-nistp521"
    45  	KeyAlgoED25519    = "ssh-ed25519"
    46  	KeyAlgoSKED25519  = "sk-ssh-ed25519@openssh.com"
    47  
    48  	// KeyAlgoRSASHA256 and KeyAlgoRSASHA512 are only public key algorithms, not
    49  	// public key formats, so they can't appear as a PublicKey.Type. The
    50  	// corresponding PublicKey.Type is KeyAlgoRSA. See RFC 8332, Section 2.
    51  	KeyAlgoRSASHA256 = "rsa-sha2-256"
    52  	KeyAlgoRSASHA512 = "rsa-sha2-512"
    53  )
    54  
    55  const (
    56  	// Deprecated: use KeyAlgoRSA.
    57  	SigAlgoRSA = KeyAlgoRSA
    58  	// Deprecated: use KeyAlgoRSASHA256.
    59  	SigAlgoRSASHA2256 = KeyAlgoRSASHA256
    60  	// Deprecated: use KeyAlgoRSASHA512.
    61  	SigAlgoRSASHA2512 = KeyAlgoRSASHA512
    62  )
    63  
    64  // parsePubKey parses a public key of the given algorithm.
    65  // Use ParsePublicKey for keys with prepended algorithm.
    66  func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) {
    67  	switch algo {
    68  	case KeyAlgoRSA:
    69  		return parseRSA(in)
    70  	case KeyAlgoDSA:
    71  		return parseDSA(in)
    72  	case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
    73  		return parseECDSA(in)
    74  	case KeyAlgoSKECDSA256:
    75  		return parseSKECDSA(in)
    76  	case KeyAlgoED25519:
    77  		return parseED25519(in)
    78  	case KeyAlgoSKED25519:
    79  		return parseSKEd25519(in)
    80  	case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01:
    81  		cert, err := parseCert(in, certKeyAlgoNames[algo])
    82  		if err != nil {
    83  			return nil, nil, err
    84  		}
    85  		return cert, nil, nil
    86  	}
    87  	return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo)
    88  }
    89  
    90  // parseAuthorizedKey parses a public key in OpenSSH authorized_keys format
    91  // (see sshd(8) manual page) once the options and key type fields have been
    92  // removed.
    93  func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) {
    94  	in = bytes.TrimSpace(in)
    95  
    96  	i := bytes.IndexAny(in, " \t")
    97  	if i == -1 {
    98  		i = len(in)
    99  	}
   100  	base64Key := in[:i]
   101  
   102  	key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key)))
   103  	n, err := base64.StdEncoding.Decode(key, base64Key)
   104  	if err != nil {
   105  		return nil, "", err
   106  	}
   107  	key = key[:n]
   108  	out, err = ParsePublicKey(key)
   109  	if err != nil {
   110  		return nil, "", err
   111  	}
   112  	comment = string(bytes.TrimSpace(in[i:]))
   113  	return out, comment, nil
   114  }
   115  
   116  // ParseKnownHosts parses an entry in the format of the known_hosts file.
   117  //
   118  // The known_hosts format is documented in the sshd(8) manual page. This
   119  // function will parse a single entry from in. On successful return, marker
   120  // will contain the optional marker value (i.e. "cert-authority" or "revoked")
   121  // or else be empty, hosts will contain the hosts that this entry matches,
   122  // pubKey will contain the public key and comment will contain any trailing
   123  // comment at the end of the line. See the sshd(8) manual page for the various
   124  // forms that a host string can take.
   125  //
   126  // The unparsed remainder of the input will be returned in rest. This function
   127  // can be called repeatedly to parse multiple entries.
   128  //
   129  // If no entries were found in the input then err will be io.EOF. Otherwise a
   130  // non-nil err value indicates a parse error.
   131  func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) {
   132  	for len(in) > 0 {
   133  		end := bytes.IndexByte(in, '\n')
   134  		if end != -1 {
   135  			rest = in[end+1:]
   136  			in = in[:end]
   137  		} else {
   138  			rest = nil
   139  		}
   140  
   141  		end = bytes.IndexByte(in, '\r')
   142  		if end != -1 {
   143  			in = in[:end]
   144  		}
   145  
   146  		in = bytes.TrimSpace(in)
   147  		if len(in) == 0 || in[0] == '#' {
   148  			in = rest
   149  			continue
   150  		}
   151  
   152  		i := bytes.IndexAny(in, " \t")
   153  		if i == -1 {
   154  			in = rest
   155  			continue
   156  		}
   157  
   158  		// Strip out the beginning of the known_host key.
   159  		// This is either an optional marker or a (set of) hostname(s).
   160  		keyFields := bytes.Fields(in)
   161  		if len(keyFields) < 3 || len(keyFields) > 5 {
   162  			return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data")
   163  		}
   164  
   165  		// keyFields[0] is either "@cert-authority", "@revoked" or a comma separated
   166  		// list of hosts
   167  		marker := ""
   168  		if keyFields[0][0] == '@' {
   169  			marker = string(keyFields[0][1:])
   170  			keyFields = keyFields[1:]
   171  		}
   172  
   173  		hosts := string(keyFields[0])
   174  		// keyFields[1] contains the key type (e.g. “ssh-rsa”).
   175  		// However, that information is duplicated inside the
   176  		// base64-encoded key and so is ignored here.
   177  
   178  		key := bytes.Join(keyFields[2:], []byte(" "))
   179  		if pubKey, comment, err = parseAuthorizedKey(key); err != nil {
   180  			return "", nil, nil, "", nil, err
   181  		}
   182  
   183  		return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil
   184  	}
   185  
   186  	return "", nil, nil, "", nil, io.EOF
   187  }
   188  
   189  // ParseAuthorizedKey parses a public key from an authorized_keys
   190  // file used in OpenSSH according to the sshd(8) manual page.
   191  func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) {
   192  	for len(in) > 0 {
   193  		end := bytes.IndexByte(in, '\n')
   194  		if end != -1 {
   195  			rest = in[end+1:]
   196  			in = in[:end]
   197  		} else {
   198  			rest = nil
   199  		}
   200  
   201  		end = bytes.IndexByte(in, '\r')
   202  		if end != -1 {
   203  			in = in[:end]
   204  		}
   205  
   206  		in = bytes.TrimSpace(in)
   207  		if len(in) == 0 || in[0] == '#' {
   208  			in = rest
   209  			continue
   210  		}
   211  
   212  		i := bytes.IndexAny(in, " \t")
   213  		if i == -1 {
   214  			in = rest
   215  			continue
   216  		}
   217  
   218  		if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
   219  			return out, comment, options, rest, nil
   220  		}
   221  
   222  		// No key type recognised. Maybe there's an options field at
   223  		// the beginning.
   224  		var b byte
   225  		inQuote := false
   226  		var candidateOptions []string
   227  		optionStart := 0
   228  		for i, b = range in {
   229  			isEnd := !inQuote && (b == ' ' || b == '\t')
   230  			if (b == ',' && !inQuote) || isEnd {
   231  				if i-optionStart > 0 {
   232  					candidateOptions = append(candidateOptions, string(in[optionStart:i]))
   233  				}
   234  				optionStart = i + 1
   235  			}
   236  			if isEnd {
   237  				break
   238  			}
   239  			if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) {
   240  				inQuote = !inQuote
   241  			}
   242  		}
   243  		for i < len(in) && (in[i] == ' ' || in[i] == '\t') {
   244  			i++
   245  		}
   246  		if i == len(in) {
   247  			// Invalid line: unmatched quote
   248  			in = rest
   249  			continue
   250  		}
   251  
   252  		in = in[i:]
   253  		i = bytes.IndexAny(in, " \t")
   254  		if i == -1 {
   255  			in = rest
   256  			continue
   257  		}
   258  
   259  		if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
   260  			options = candidateOptions
   261  			return out, comment, options, rest, nil
   262  		}
   263  
   264  		in = rest
   265  		continue
   266  	}
   267  
   268  	return nil, "", nil, nil, errors.New("ssh: no key found")
   269  }
   270  
   271  // ParsePublicKey parses an SSH public key formatted for use in
   272  // the SSH wire protocol according to RFC 4253, section 6.6.
   273  func ParsePublicKey(in []byte) (out PublicKey, err error) {
   274  	algo, in, ok := parseString(in)
   275  	if !ok {
   276  		return nil, errShortRead
   277  	}
   278  	var rest []byte
   279  	out, rest, err = parsePubKey(in, string(algo))
   280  	if len(rest) > 0 {
   281  		return nil, errors.New("ssh: trailing junk in public key")
   282  	}
   283  
   284  	return out, err
   285  }
   286  
   287  // MarshalAuthorizedKey serializes key for inclusion in an OpenSSH
   288  // authorized_keys file. The return value ends with newline.
   289  func MarshalAuthorizedKey(key PublicKey) []byte {
   290  	b := &bytes.Buffer{}
   291  	b.WriteString(key.Type())
   292  	b.WriteByte(' ')
   293  	e := base64.NewEncoder(base64.StdEncoding, b)
   294  	e.Write(key.Marshal())
   295  	e.Close()
   296  	b.WriteByte('\n')
   297  	return b.Bytes()
   298  }
   299  
   300  // MarshalPrivateKey returns a PEM block with the private key serialized in the
   301  // OpenSSH format.
   302  func MarshalPrivateKey(key crypto.PrivateKey, comment string) (*pem.Block, error) {
   303  	return marshalOpenSSHPrivateKey(key, comment, unencryptedOpenSSHMarshaler)
   304  }
   305  
   306  // MarshalPrivateKeyWithPassphrase returns a PEM block holding the encrypted
   307  // private key serialized in the OpenSSH format.
   308  func MarshalPrivateKeyWithPassphrase(key crypto.PrivateKey, comment string, passphrase []byte) (*pem.Block, error) {
   309  	return marshalOpenSSHPrivateKey(key, comment, passphraseProtectedOpenSSHMarshaler(passphrase))
   310  }
   311  
   312  // PublicKey represents a public key using an unspecified algorithm.
   313  //
   314  // Some PublicKeys provided by this package also implement CryptoPublicKey.
   315  type PublicKey interface {
   316  	// Type returns the key format name, e.g. "ssh-rsa".
   317  	Type() string
   318  
   319  	// Marshal returns the serialized key data in SSH wire format, with the name
   320  	// prefix. To unmarshal the returned data, use the ParsePublicKey function.
   321  	Marshal() []byte
   322  
   323  	// Verify that sig is a signature on the given data using this key. This
   324  	// method will hash the data appropriately first. sig.Format is allowed to
   325  	// be any signature algorithm compatible with the key type, the caller
   326  	// should check if it has more stringent requirements.
   327  	Verify(data []byte, sig *Signature) error
   328  }
   329  
   330  // CryptoPublicKey, if implemented by a PublicKey,
   331  // returns the underlying crypto.PublicKey form of the key.
   332  type CryptoPublicKey interface {
   333  	CryptoPublicKey() crypto.PublicKey
   334  }
   335  
   336  // A Signer can create signatures that verify against a public key.
   337  //
   338  // Some Signers provided by this package also implement MultiAlgorithmSigner.
   339  type Signer interface {
   340  	// PublicKey returns the associated PublicKey.
   341  	PublicKey() PublicKey
   342  
   343  	// Sign returns a signature for the given data. This method will hash the
   344  	// data appropriately first. The signature algorithm is expected to match
   345  	// the key format returned by the PublicKey.Type method (and not to be any
   346  	// alternative algorithm supported by the key format).
   347  	Sign(rand io.Reader, data []byte) (*Signature, error)
   348  }
   349  
   350  // An AlgorithmSigner is a Signer that also supports specifying an algorithm to
   351  // use for signing.
   352  //
   353  // An AlgorithmSigner can't advertise the algorithms it supports, unless it also
   354  // implements MultiAlgorithmSigner, so it should be prepared to be invoked with
   355  // every algorithm supported by the public key format.
   356  type AlgorithmSigner interface {
   357  	Signer
   358  
   359  	// SignWithAlgorithm is like Signer.Sign, but allows specifying a desired
   360  	// signing algorithm. Callers may pass an empty string for the algorithm in
   361  	// which case the AlgorithmSigner will use a default algorithm. This default
   362  	// doesn't currently control any behavior in this package.
   363  	SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error)
   364  }
   365  
   366  // MultiAlgorithmSigner is an AlgorithmSigner that also reports the algorithms
   367  // supported by that signer.
   368  type MultiAlgorithmSigner interface {
   369  	AlgorithmSigner
   370  
   371  	// Algorithms returns the available algorithms in preference order. The list
   372  	// must not be empty, and it must not include certificate types.
   373  	Algorithms() []string
   374  }
   375  
   376  // NewSignerWithAlgorithms returns a signer restricted to the specified
   377  // algorithms. The algorithms must be set in preference order. The list must not
   378  // be empty, and it must not include certificate types. An error is returned if
   379  // the specified algorithms are incompatible with the public key type.
   380  func NewSignerWithAlgorithms(signer AlgorithmSigner, algorithms []string) (MultiAlgorithmSigner, error) {
   381  	if len(algorithms) == 0 {
   382  		return nil, errors.New("ssh: please specify at least one valid signing algorithm")
   383  	}
   384  	var signerAlgos []string
   385  	supportedAlgos := algorithmsForKeyFormat(underlyingAlgo(signer.PublicKey().Type()))
   386  	if s, ok := signer.(*multiAlgorithmSigner); ok {
   387  		signerAlgos = s.Algorithms()
   388  	} else {
   389  		signerAlgos = supportedAlgos
   390  	}
   391  
   392  	for _, algo := range algorithms {
   393  		if !contains(supportedAlgos, algo) {
   394  			return nil, fmt.Errorf("ssh: algorithm %q is not supported for key type %q",
   395  				algo, signer.PublicKey().Type())
   396  		}
   397  		if !contains(signerAlgos, algo) {
   398  			return nil, fmt.Errorf("ssh: algorithm %q is restricted for the provided signer", algo)
   399  		}
   400  	}
   401  	return &multiAlgorithmSigner{
   402  		AlgorithmSigner:     signer,
   403  		supportedAlgorithms: algorithms,
   404  	}, nil
   405  }
   406  
   407  type multiAlgorithmSigner struct {
   408  	AlgorithmSigner
   409  	supportedAlgorithms []string
   410  }
   411  
   412  func (s *multiAlgorithmSigner) Algorithms() []string {
   413  	return s.supportedAlgorithms
   414  }
   415  
   416  func (s *multiAlgorithmSigner) isAlgorithmSupported(algorithm string) bool {
   417  	if algorithm == "" {
   418  		algorithm = underlyingAlgo(s.PublicKey().Type())
   419  	}
   420  	for _, algo := range s.supportedAlgorithms {
   421  		if algorithm == algo {
   422  			return true
   423  		}
   424  	}
   425  	return false
   426  }
   427  
   428  func (s *multiAlgorithmSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
   429  	if !s.isAlgorithmSupported(algorithm) {
   430  		return nil, fmt.Errorf("ssh: algorithm %q is not supported: %v", algorithm, s.supportedAlgorithms)
   431  	}
   432  	return s.AlgorithmSigner.SignWithAlgorithm(rand, data, algorithm)
   433  }
   434  
   435  type rsaPublicKey rsa.PublicKey
   436  
   437  func (r *rsaPublicKey) Type() string {
   438  	return "ssh-rsa"
   439  }
   440  
   441  // parseRSA parses an RSA key according to RFC 4253, section 6.6.
   442  func parseRSA(in []byte) (out PublicKey, rest []byte, err error) {
   443  	var w struct {
   444  		E    *big.Int
   445  		N    *big.Int
   446  		Rest []byte `ssh:"rest"`
   447  	}
   448  	if err := Unmarshal(in, &w); err != nil {
   449  		return nil, nil, err
   450  	}
   451  
   452  	if w.E.BitLen() > 24 {
   453  		return nil, nil, errors.New("ssh: exponent too large")
   454  	}
   455  	e := w.E.Int64()
   456  	if e < 3 || e&1 == 0 {
   457  		return nil, nil, errors.New("ssh: incorrect exponent")
   458  	}
   459  
   460  	var key rsa.PublicKey
   461  	key.E = int(e)
   462  	key.N = w.N
   463  	return (*rsaPublicKey)(&key), w.Rest, nil
   464  }
   465  
   466  func (r *rsaPublicKey) Marshal() []byte {
   467  	e := new(big.Int).SetInt64(int64(r.E))
   468  	// RSA publickey struct layout should match the struct used by
   469  	// parseRSACert in the x/crypto/ssh/agent package.
   470  	wirekey := struct {
   471  		Name string
   472  		E    *big.Int
   473  		N    *big.Int
   474  	}{
   475  		KeyAlgoRSA,
   476  		e,
   477  		r.N,
   478  	}
   479  	return Marshal(&wirekey)
   480  }
   481  
   482  func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error {
   483  	supportedAlgos := algorithmsForKeyFormat(r.Type())
   484  	if !contains(supportedAlgos, sig.Format) {
   485  		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type())
   486  	}
   487  	hash := hashFuncs[sig.Format]
   488  	h := hash.New()
   489  	h.Write(data)
   490  	digest := h.Sum(nil)
   491  
   492  	// Signatures in PKCS1v15 must match the key's modulus in
   493  	// length. However with SSH, some signers provide RSA
   494  	// signatures which are missing the MSB 0's of the bignum
   495  	// represented. With ssh-rsa signatures, this is encouraged by
   496  	// the spec (even though e.g. OpenSSH will give the full
   497  	// length unconditionally). With rsa-sha2-* signatures, the
   498  	// verifier is allowed to support these, even though they are
   499  	// out of spec. See RFC 4253 Section 6.6 for ssh-rsa and RFC
   500  	// 8332 Section 3 for rsa-sha2-* details.
   501  	//
   502  	// In practice:
   503  	// * OpenSSH always allows "short" signatures:
   504  	//   https://github.com/openssh/openssh-portable/blob/V_9_8_P1/ssh-rsa.c#L526
   505  	//   but always generates padded signatures:
   506  	//   https://github.com/openssh/openssh-portable/blob/V_9_8_P1/ssh-rsa.c#L439
   507  	//
   508  	// * PuTTY versions 0.81 and earlier will generate short
   509  	//   signatures for all RSA signature variants. Note that
   510  	//   PuTTY is embedded in other software, such as WinSCP and
   511  	//   FileZilla. At the time of writing, a patch has been
   512  	//   applied to PuTTY to generate padded signatures for
   513  	//   rsa-sha2-*, but not yet released:
   514  	//   https://git.tartarus.org/?p=simon/putty.git;a=commitdiff;h=a5bcf3d384e1bf15a51a6923c3724cbbee022d8e
   515  	//
   516  	// * SSH.NET versions 2024.0.0 and earlier will generate short
   517  	//   signatures for all RSA signature variants, fixed in 2024.1.0:
   518  	//   https://github.com/sshnet/SSH.NET/releases/tag/2024.1.0
   519  	//
   520  	// As a result, we pad these up to the key size by inserting
   521  	// leading 0's.
   522  	//
   523  	// Note that support for short signatures with rsa-sha2-* may
   524  	// be removed in the future due to such signatures not being
   525  	// allowed by the spec.
   526  	blob := sig.Blob
   527  	keySize := (*rsa.PublicKey)(r).Size()
   528  	if len(blob) < keySize {
   529  		padded := make([]byte, keySize)
   530  		copy(padded[keySize-len(blob):], blob)
   531  		blob = padded
   532  	}
   533  	return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), hash, digest, blob)
   534  }
   535  
   536  func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {
   537  	return (*rsa.PublicKey)(r)
   538  }
   539  
   540  type dsaPublicKey dsa.PublicKey
   541  
   542  func (k *dsaPublicKey) Type() string {
   543  	return "ssh-dss"
   544  }
   545  
   546  func checkDSAParams(param *dsa.Parameters) error {
   547  	// SSH specifies FIPS 186-2, which only provided a single size
   548  	// (1024 bits) DSA key. FIPS 186-3 allows for larger key
   549  	// sizes, which would confuse SSH.
   550  	if l := param.P.BitLen(); l != 1024 {
   551  		return fmt.Errorf("ssh: unsupported DSA key size %d", l)
   552  	}
   553  
   554  	return nil
   555  }
   556  
   557  // parseDSA parses an DSA key according to RFC 4253, section 6.6.
   558  func parseDSA(in []byte) (out PublicKey, rest []byte, err error) {
   559  	var w struct {
   560  		P, Q, G, Y *big.Int
   561  		Rest       []byte `ssh:"rest"`
   562  	}
   563  	if err := Unmarshal(in, &w); err != nil {
   564  		return nil, nil, err
   565  	}
   566  
   567  	param := dsa.Parameters{
   568  		P: w.P,
   569  		Q: w.Q,
   570  		G: w.G,
   571  	}
   572  	if err := checkDSAParams(&param); err != nil {
   573  		return nil, nil, err
   574  	}
   575  
   576  	key := &dsaPublicKey{
   577  		Parameters: param,
   578  		Y:          w.Y,
   579  	}
   580  	return key, w.Rest, nil
   581  }
   582  
   583  func (k *dsaPublicKey) Marshal() []byte {
   584  	// DSA publickey struct layout should match the struct used by
   585  	// parseDSACert in the x/crypto/ssh/agent package.
   586  	w := struct {
   587  		Name       string
   588  		P, Q, G, Y *big.Int
   589  	}{
   590  		k.Type(),
   591  		k.P,
   592  		k.Q,
   593  		k.G,
   594  		k.Y,
   595  	}
   596  
   597  	return Marshal(&w)
   598  }
   599  
   600  func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error {
   601  	if sig.Format != k.Type() {
   602  		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
   603  	}
   604  	h := hashFuncs[sig.Format].New()
   605  	h.Write(data)
   606  	digest := h.Sum(nil)
   607  
   608  	// Per RFC 4253, section 6.6,
   609  	// The value for 'dss_signature_blob' is encoded as a string containing
   610  	// r, followed by s (which are 160-bit integers, without lengths or
   611  	// padding, unsigned, and in network byte order).
   612  	// For DSS purposes, sig.Blob should be exactly 40 bytes in length.
   613  	if len(sig.Blob) != 40 {
   614  		return errors.New("ssh: DSA signature parse error")
   615  	}
   616  	r := new(big.Int).SetBytes(sig.Blob[:20])
   617  	s := new(big.Int).SetBytes(sig.Blob[20:])
   618  	if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) {
   619  		return nil
   620  	}
   621  	return errors.New("ssh: signature did not verify")
   622  }
   623  
   624  func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey {
   625  	return (*dsa.PublicKey)(k)
   626  }
   627  
   628  type dsaPrivateKey struct {
   629  	*dsa.PrivateKey
   630  }
   631  
   632  func (k *dsaPrivateKey) PublicKey() PublicKey {
   633  	return (*dsaPublicKey)(&k.PrivateKey.PublicKey)
   634  }
   635  
   636  func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) {
   637  	return k.SignWithAlgorithm(rand, data, k.PublicKey().Type())
   638  }
   639  
   640  func (k *dsaPrivateKey) Algorithms() []string {
   641  	return []string{k.PublicKey().Type()}
   642  }
   643  
   644  func (k *dsaPrivateKey) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
   645  	if algorithm != "" && algorithm != k.PublicKey().Type() {
   646  		return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
   647  	}
   648  
   649  	h := hashFuncs[k.PublicKey().Type()].New()
   650  	h.Write(data)
   651  	digest := h.Sum(nil)
   652  	r, s, err := dsa.Sign(rand, k.PrivateKey, digest)
   653  	if err != nil {
   654  		return nil, err
   655  	}
   656  
   657  	sig := make([]byte, 40)
   658  	rb := r.Bytes()
   659  	sb := s.Bytes()
   660  
   661  	copy(sig[20-len(rb):20], rb)
   662  	copy(sig[40-len(sb):], sb)
   663  
   664  	return &Signature{
   665  		Format: k.PublicKey().Type(),
   666  		Blob:   sig,
   667  	}, nil
   668  }
   669  
   670  type ecdsaPublicKey ecdsa.PublicKey
   671  
   672  func (k *ecdsaPublicKey) Type() string {
   673  	return "ecdsa-sha2-" + k.nistID()
   674  }
   675  
   676  func (k *ecdsaPublicKey) nistID() string {
   677  	switch k.Params().BitSize {
   678  	case 256:
   679  		return "nistp256"
   680  	case 384:
   681  		return "nistp384"
   682  	case 521:
   683  		return "nistp521"
   684  	}
   685  	panic("ssh: unsupported ecdsa key size")
   686  }
   687  
   688  type ed25519PublicKey ed25519.PublicKey
   689  
   690  func (k ed25519PublicKey) Type() string {
   691  	return KeyAlgoED25519
   692  }
   693  
   694  func parseED25519(in []byte) (out PublicKey, rest []byte, err error) {
   695  	var w struct {
   696  		KeyBytes []byte
   697  		Rest     []byte `ssh:"rest"`
   698  	}
   699  
   700  	if err := Unmarshal(in, &w); err != nil {
   701  		return nil, nil, err
   702  	}
   703  
   704  	if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
   705  		return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
   706  	}
   707  
   708  	return ed25519PublicKey(w.KeyBytes), w.Rest, nil
   709  }
   710  
   711  func (k ed25519PublicKey) Marshal() []byte {
   712  	w := struct {
   713  		Name     string
   714  		KeyBytes []byte
   715  	}{
   716  		KeyAlgoED25519,
   717  		[]byte(k),
   718  	}
   719  	return Marshal(&w)
   720  }
   721  
   722  func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error {
   723  	if sig.Format != k.Type() {
   724  		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
   725  	}
   726  	if l := len(k); l != ed25519.PublicKeySize {
   727  		return fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
   728  	}
   729  
   730  	if ok := ed25519.Verify(ed25519.PublicKey(k), b, sig.Blob); !ok {
   731  		return errors.New("ssh: signature did not verify")
   732  	}
   733  
   734  	return nil
   735  }
   736  
   737  func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey {
   738  	return ed25519.PublicKey(k)
   739  }
   740  
   741  func supportedEllipticCurve(curve elliptic.Curve) bool {
   742  	return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521()
   743  }
   744  
   745  // parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
   746  func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) {
   747  	var w struct {
   748  		Curve    string
   749  		KeyBytes []byte
   750  		Rest     []byte `ssh:"rest"`
   751  	}
   752  
   753  	if err := Unmarshal(in, &w); err != nil {
   754  		return nil, nil, err
   755  	}
   756  
   757  	key := new(ecdsa.PublicKey)
   758  
   759  	switch w.Curve {
   760  	case "nistp256":
   761  		key.Curve = elliptic.P256()
   762  	case "nistp384":
   763  		key.Curve = elliptic.P384()
   764  	case "nistp521":
   765  		key.Curve = elliptic.P521()
   766  	default:
   767  		return nil, nil, errors.New("ssh: unsupported curve")
   768  	}
   769  
   770  	key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
   771  	if key.X == nil || key.Y == nil {
   772  		return nil, nil, errors.New("ssh: invalid curve point")
   773  	}
   774  	return (*ecdsaPublicKey)(key), w.Rest, nil
   775  }
   776  
   777  func (k *ecdsaPublicKey) Marshal() []byte {
   778  	// See RFC 5656, section 3.1.
   779  	keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
   780  	// ECDSA publickey struct layout should match the struct used by
   781  	// parseECDSACert in the x/crypto/ssh/agent package.
   782  	w := struct {
   783  		Name string
   784  		ID   string
   785  		Key  []byte
   786  	}{
   787  		k.Type(),
   788  		k.nistID(),
   789  		keyBytes,
   790  	}
   791  
   792  	return Marshal(&w)
   793  }
   794  
   795  func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error {
   796  	if sig.Format != k.Type() {
   797  		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
   798  	}
   799  
   800  	h := hashFuncs[sig.Format].New()
   801  	h.Write(data)
   802  	digest := h.Sum(nil)
   803  
   804  	// Per RFC 5656, section 3.1.2,
   805  	// The ecdsa_signature_blob value has the following specific encoding:
   806  	//    mpint    r
   807  	//    mpint    s
   808  	var ecSig struct {
   809  		R *big.Int
   810  		S *big.Int
   811  	}
   812  
   813  	if err := Unmarshal(sig.Blob, &ecSig); err != nil {
   814  		return err
   815  	}
   816  
   817  	if ecdsa.Verify((*ecdsa.PublicKey)(k), digest, ecSig.R, ecSig.S) {
   818  		return nil
   819  	}
   820  	return errors.New("ssh: signature did not verify")
   821  }
   822  
   823  func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey {
   824  	return (*ecdsa.PublicKey)(k)
   825  }
   826  
   827  // skFields holds the additional fields present in U2F/FIDO2 signatures.
   828  // See openssh/PROTOCOL.u2f 'SSH U2F Signatures' for details.
   829  type skFields struct {
   830  	// Flags contains U2F/FIDO2 flags such as 'user present'
   831  	Flags byte
   832  	// Counter is a monotonic signature counter which can be
   833  	// used to detect concurrent use of a private key, should
   834  	// it be extracted from hardware.
   835  	Counter uint32
   836  }
   837  
   838  type skECDSAPublicKey struct {
   839  	// application is a URL-like string, typically "ssh:" for SSH.
   840  	// see openssh/PROTOCOL.u2f for details.
   841  	application string
   842  	ecdsa.PublicKey
   843  }
   844  
   845  func (k *skECDSAPublicKey) Type() string {
   846  	return KeyAlgoSKECDSA256
   847  }
   848  
   849  func (k *skECDSAPublicKey) nistID() string {
   850  	return "nistp256"
   851  }
   852  
   853  func parseSKECDSA(in []byte) (out PublicKey, rest []byte, err error) {
   854  	var w struct {
   855  		Curve       string
   856  		KeyBytes    []byte
   857  		Application string
   858  		Rest        []byte `ssh:"rest"`
   859  	}
   860  
   861  	if err := Unmarshal(in, &w); err != nil {
   862  		return nil, nil, err
   863  	}
   864  
   865  	key := new(skECDSAPublicKey)
   866  	key.application = w.Application
   867  
   868  	if w.Curve != "nistp256" {
   869  		return nil, nil, errors.New("ssh: unsupported curve")
   870  	}
   871  	key.Curve = elliptic.P256()
   872  
   873  	key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
   874  	if key.X == nil || key.Y == nil {
   875  		return nil, nil, errors.New("ssh: invalid curve point")
   876  	}
   877  
   878  	return key, w.Rest, nil
   879  }
   880  
   881  func (k *skECDSAPublicKey) Marshal() []byte {
   882  	// See RFC 5656, section 3.1.
   883  	keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
   884  	w := struct {
   885  		Name        string
   886  		ID          string
   887  		Key         []byte
   888  		Application string
   889  	}{
   890  		k.Type(),
   891  		k.nistID(),
   892  		keyBytes,
   893  		k.application,
   894  	}
   895  
   896  	return Marshal(&w)
   897  }
   898  
   899  func (k *skECDSAPublicKey) Verify(data []byte, sig *Signature) error {
   900  	if sig.Format != k.Type() {
   901  		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
   902  	}
   903  
   904  	h := hashFuncs[sig.Format].New()
   905  	h.Write([]byte(k.application))
   906  	appDigest := h.Sum(nil)
   907  
   908  	h.Reset()
   909  	h.Write(data)
   910  	dataDigest := h.Sum(nil)
   911  
   912  	var ecSig struct {
   913  		R *big.Int
   914  		S *big.Int
   915  	}
   916  	if err := Unmarshal(sig.Blob, &ecSig); err != nil {
   917  		return err
   918  	}
   919  
   920  	var skf skFields
   921  	if err := Unmarshal(sig.Rest, &skf); err != nil {
   922  		return err
   923  	}
   924  
   925  	blob := struct {
   926  		ApplicationDigest []byte `ssh:"rest"`
   927  		Flags             byte
   928  		Counter           uint32
   929  		MessageDigest     []byte `ssh:"rest"`
   930  	}{
   931  		appDigest,
   932  		skf.Flags,
   933  		skf.Counter,
   934  		dataDigest,
   935  	}
   936  
   937  	original := Marshal(blob)
   938  
   939  	h.Reset()
   940  	h.Write(original)
   941  	digest := h.Sum(nil)
   942  
   943  	if ecdsa.Verify((*ecdsa.PublicKey)(&k.PublicKey), digest, ecSig.R, ecSig.S) {
   944  		return nil
   945  	}
   946  	return errors.New("ssh: signature did not verify")
   947  }
   948  
   949  func (k *skECDSAPublicKey) CryptoPublicKey() crypto.PublicKey {
   950  	return &k.PublicKey
   951  }
   952  
   953  type skEd25519PublicKey struct {
   954  	// application is a URL-like string, typically "ssh:" for SSH.
   955  	// see openssh/PROTOCOL.u2f for details.
   956  	application string
   957  	ed25519.PublicKey
   958  }
   959  
   960  func (k *skEd25519PublicKey) Type() string {
   961  	return KeyAlgoSKED25519
   962  }
   963  
   964  func parseSKEd25519(in []byte) (out PublicKey, rest []byte, err error) {
   965  	var w struct {
   966  		KeyBytes    []byte
   967  		Application string
   968  		Rest        []byte `ssh:"rest"`
   969  	}
   970  
   971  	if err := Unmarshal(in, &w); err != nil {
   972  		return nil, nil, err
   973  	}
   974  
   975  	if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
   976  		return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
   977  	}
   978  
   979  	key := new(skEd25519PublicKey)
   980  	key.application = w.Application
   981  	key.PublicKey = ed25519.PublicKey(w.KeyBytes)
   982  
   983  	return key, w.Rest, nil
   984  }
   985  
   986  func (k *skEd25519PublicKey) Marshal() []byte {
   987  	w := struct {
   988  		Name        string
   989  		KeyBytes    []byte
   990  		Application string
   991  	}{
   992  		KeyAlgoSKED25519,
   993  		[]byte(k.PublicKey),
   994  		k.application,
   995  	}
   996  	return Marshal(&w)
   997  }
   998  
   999  func (k *skEd25519PublicKey) Verify(data []byte, sig *Signature) error {
  1000  	if sig.Format != k.Type() {
  1001  		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
  1002  	}
  1003  	if l := len(k.PublicKey); l != ed25519.PublicKeySize {
  1004  		return fmt.Errorf("invalid size %d for Ed25519 public key", l)
  1005  	}
  1006  
  1007  	h := hashFuncs[sig.Format].New()
  1008  	h.Write([]byte(k.application))
  1009  	appDigest := h.Sum(nil)
  1010  
  1011  	h.Reset()
  1012  	h.Write(data)
  1013  	dataDigest := h.Sum(nil)
  1014  
  1015  	var edSig struct {
  1016  		Signature []byte `ssh:"rest"`
  1017  	}
  1018  
  1019  	if err := Unmarshal(sig.Blob, &edSig); err != nil {
  1020  		return err
  1021  	}
  1022  
  1023  	var skf skFields
  1024  	if err := Unmarshal(sig.Rest, &skf); err != nil {
  1025  		return err
  1026  	}
  1027  
  1028  	blob := struct {
  1029  		ApplicationDigest []byte `ssh:"rest"`
  1030  		Flags             byte
  1031  		Counter           uint32
  1032  		MessageDigest     []byte `ssh:"rest"`
  1033  	}{
  1034  		appDigest,
  1035  		skf.Flags,
  1036  		skf.Counter,
  1037  		dataDigest,
  1038  	}
  1039  
  1040  	original := Marshal(blob)
  1041  
  1042  	if ok := ed25519.Verify(k.PublicKey, original, edSig.Signature); !ok {
  1043  		return errors.New("ssh: signature did not verify")
  1044  	}
  1045  
  1046  	return nil
  1047  }
  1048  
  1049  func (k *skEd25519PublicKey) CryptoPublicKey() crypto.PublicKey {
  1050  	return k.PublicKey
  1051  }
  1052  
  1053  // NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,
  1054  // *ecdsa.PrivateKey or any other crypto.Signer and returns a
  1055  // corresponding Signer instance. ECDSA keys must use P-256, P-384 or
  1056  // P-521. DSA keys must use parameter size L1024N160.
  1057  func NewSignerFromKey(key interface{}) (Signer, error) {
  1058  	switch key := key.(type) {
  1059  	case crypto.Signer:
  1060  		return NewSignerFromSigner(key)
  1061  	case *dsa.PrivateKey:
  1062  		return newDSAPrivateKey(key)
  1063  	default:
  1064  		return nil, fmt.Errorf("ssh: unsupported key type %T", key)
  1065  	}
  1066  }
  1067  
  1068  func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) {
  1069  	if err := checkDSAParams(&key.PublicKey.Parameters); err != nil {
  1070  		return nil, err
  1071  	}
  1072  
  1073  	return &dsaPrivateKey{key}, nil
  1074  }
  1075  
  1076  type wrappedSigner struct {
  1077  	signer crypto.Signer
  1078  	pubKey PublicKey
  1079  }
  1080  
  1081  // NewSignerFromSigner takes any crypto.Signer implementation and
  1082  // returns a corresponding Signer interface. This can be used, for
  1083  // example, with keys kept in hardware modules.
  1084  func NewSignerFromSigner(signer crypto.Signer) (Signer, error) {
  1085  	pubKey, err := NewPublicKey(signer.Public())
  1086  	if err != nil {
  1087  		return nil, err
  1088  	}
  1089  
  1090  	return &wrappedSigner{signer, pubKey}, nil
  1091  }
  1092  
  1093  func (s *wrappedSigner) PublicKey() PublicKey {
  1094  	return s.pubKey
  1095  }
  1096  
  1097  func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {
  1098  	return s.SignWithAlgorithm(rand, data, s.pubKey.Type())
  1099  }
  1100  
  1101  func (s *wrappedSigner) Algorithms() []string {
  1102  	return algorithmsForKeyFormat(s.pubKey.Type())
  1103  }
  1104  
  1105  func (s *wrappedSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
  1106  	if algorithm == "" {
  1107  		algorithm = s.pubKey.Type()
  1108  	}
  1109  
  1110  	if !contains(s.Algorithms(), algorithm) {
  1111  		return nil, fmt.Errorf("ssh: unsupported signature algorithm %q for key format %q", algorithm, s.pubKey.Type())
  1112  	}
  1113  
  1114  	hashFunc := hashFuncs[algorithm]
  1115  	var digest []byte
  1116  	if hashFunc != 0 {
  1117  		h := hashFunc.New()
  1118  		h.Write(data)
  1119  		digest = h.Sum(nil)
  1120  	} else {
  1121  		digest = data
  1122  	}
  1123  
  1124  	signature, err := s.signer.Sign(rand, digest, hashFunc)
  1125  	if err != nil {
  1126  		return nil, err
  1127  	}
  1128  
  1129  	// crypto.Signer.Sign is expected to return an ASN.1-encoded signature
  1130  	// for ECDSA and DSA, but that's not the encoding expected by SSH, so
  1131  	// re-encode.
  1132  	switch s.pubKey.(type) {
  1133  	case *ecdsaPublicKey, *dsaPublicKey:
  1134  		type asn1Signature struct {
  1135  			R, S *big.Int
  1136  		}
  1137  		asn1Sig := new(asn1Signature)
  1138  		_, err := asn1.Unmarshal(signature, asn1Sig)
  1139  		if err != nil {
  1140  			return nil, err
  1141  		}
  1142  
  1143  		switch s.pubKey.(type) {
  1144  		case *ecdsaPublicKey:
  1145  			signature = Marshal(asn1Sig)
  1146  
  1147  		case *dsaPublicKey:
  1148  			signature = make([]byte, 40)
  1149  			r := asn1Sig.R.Bytes()
  1150  			s := asn1Sig.S.Bytes()
  1151  			copy(signature[20-len(r):20], r)
  1152  			copy(signature[40-len(s):40], s)
  1153  		}
  1154  	}
  1155  
  1156  	return &Signature{
  1157  		Format: algorithm,
  1158  		Blob:   signature,
  1159  	}, nil
  1160  }
  1161  
  1162  // NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey,
  1163  // or ed25519.PublicKey returns a corresponding PublicKey instance.
  1164  // ECDSA keys must use P-256, P-384 or P-521.
  1165  func NewPublicKey(key interface{}) (PublicKey, error) {
  1166  	switch key := key.(type) {
  1167  	case *rsa.PublicKey:
  1168  		return (*rsaPublicKey)(key), nil
  1169  	case *ecdsa.PublicKey:
  1170  		if !supportedEllipticCurve(key.Curve) {
  1171  			return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported")
  1172  		}
  1173  		return (*ecdsaPublicKey)(key), nil
  1174  	case *dsa.PublicKey:
  1175  		return (*dsaPublicKey)(key), nil
  1176  	case ed25519.PublicKey:
  1177  		if l := len(key); l != ed25519.PublicKeySize {
  1178  			return nil, fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
  1179  		}
  1180  		return ed25519PublicKey(key), nil
  1181  	default:
  1182  		return nil, fmt.Errorf("ssh: unsupported key type %T", key)
  1183  	}
  1184  }
  1185  
  1186  // ParsePrivateKey returns a Signer from a PEM encoded private key. It supports
  1187  // the same keys as ParseRawPrivateKey. If the private key is encrypted, it
  1188  // will return a PassphraseMissingError.
  1189  func ParsePrivateKey(pemBytes []byte) (Signer, error) {
  1190  	key, err := ParseRawPrivateKey(pemBytes)
  1191  	if err != nil {
  1192  		return nil, err
  1193  	}
  1194  
  1195  	return NewSignerFromKey(key)
  1196  }
  1197  
  1198  // ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private
  1199  // key and passphrase. It supports the same keys as
  1200  // ParseRawPrivateKeyWithPassphrase.
  1201  func ParsePrivateKeyWithPassphrase(pemBytes, passphrase []byte) (Signer, error) {
  1202  	key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase)
  1203  	if err != nil {
  1204  		return nil, err
  1205  	}
  1206  
  1207  	return NewSignerFromKey(key)
  1208  }
  1209  
  1210  // encryptedBlock tells whether a private key is
  1211  // encrypted by examining its Proc-Type header
  1212  // for a mention of ENCRYPTED
  1213  // according to RFC 1421 Section 4.6.1.1.
  1214  func encryptedBlock(block *pem.Block) bool {
  1215  	return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED")
  1216  }
  1217  
  1218  // A PassphraseMissingError indicates that parsing this private key requires a
  1219  // passphrase. Use ParsePrivateKeyWithPassphrase.
  1220  type PassphraseMissingError struct {
  1221  	// PublicKey will be set if the private key format includes an unencrypted
  1222  	// public key along with the encrypted private key.
  1223  	PublicKey PublicKey
  1224  }
  1225  
  1226  func (*PassphraseMissingError) Error() string {
  1227  	return "ssh: this private key is passphrase protected"
  1228  }
  1229  
  1230  // ParseRawPrivateKey returns a private key from a PEM encoded private key. It supports
  1231  // RSA, DSA, ECDSA, and Ed25519 private keys in PKCS#1, PKCS#8, OpenSSL, and OpenSSH
  1232  // formats. If the private key is encrypted, it will return a PassphraseMissingError.
  1233  func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {
  1234  	block, _ := pem.Decode(pemBytes)
  1235  	if block == nil {
  1236  		return nil, errors.New("ssh: no key found")
  1237  	}
  1238  
  1239  	if encryptedBlock(block) {
  1240  		return nil, &PassphraseMissingError{}
  1241  	}
  1242  
  1243  	switch block.Type {
  1244  	case "RSA PRIVATE KEY":
  1245  		return x509.ParsePKCS1PrivateKey(block.Bytes)
  1246  	// RFC5208 - https://tools.ietf.org/html/rfc5208
  1247  	case "PRIVATE KEY":
  1248  		return x509.ParsePKCS8PrivateKey(block.Bytes)
  1249  	case "EC PRIVATE KEY":
  1250  		return x509.ParseECPrivateKey(block.Bytes)
  1251  	case "DSA PRIVATE KEY":
  1252  		return ParseDSAPrivateKey(block.Bytes)
  1253  	case "OPENSSH PRIVATE KEY":
  1254  		return parseOpenSSHPrivateKey(block.Bytes, unencryptedOpenSSHKey)
  1255  	default:
  1256  		return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
  1257  	}
  1258  }
  1259  
  1260  // ParseRawPrivateKeyWithPassphrase returns a private key decrypted with
  1261  // passphrase from a PEM encoded private key. If the passphrase is wrong, it
  1262  // will return x509.IncorrectPasswordError.
  1263  func ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase []byte) (interface{}, error) {
  1264  	block, _ := pem.Decode(pemBytes)
  1265  	if block == nil {
  1266  		return nil, errors.New("ssh: no key found")
  1267  	}
  1268  
  1269  	if block.Type == "OPENSSH PRIVATE KEY" {
  1270  		return parseOpenSSHPrivateKey(block.Bytes, passphraseProtectedOpenSSHKey(passphrase))
  1271  	}
  1272  
  1273  	if !encryptedBlock(block) || !x509.IsEncryptedPEMBlock(block) {
  1274  		return nil, errors.New("ssh: not an encrypted key")
  1275  	}
  1276  
  1277  	buf, err := x509.DecryptPEMBlock(block, passphrase)
  1278  	if err != nil {
  1279  		if err == x509.IncorrectPasswordError {
  1280  			return nil, err
  1281  		}
  1282  		return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err)
  1283  	}
  1284  
  1285  	var result interface{}
  1286  
  1287  	switch block.Type {
  1288  	case "RSA PRIVATE KEY":
  1289  		result, err = x509.ParsePKCS1PrivateKey(buf)
  1290  	case "EC PRIVATE KEY":
  1291  		result, err = x509.ParseECPrivateKey(buf)
  1292  	case "DSA PRIVATE KEY":
  1293  		result, err = ParseDSAPrivateKey(buf)
  1294  	default:
  1295  		err = fmt.Errorf("ssh: unsupported key type %q", block.Type)
  1296  	}
  1297  	// Because of deficiencies in the format, DecryptPEMBlock does not always
  1298  	// detect an incorrect password. In these cases decrypted DER bytes is
  1299  	// random noise. If the parsing of the key returns an asn1.StructuralError
  1300  	// we return x509.IncorrectPasswordError.
  1301  	if _, ok := err.(asn1.StructuralError); ok {
  1302  		return nil, x509.IncorrectPasswordError
  1303  	}
  1304  
  1305  	return result, err
  1306  }
  1307  
  1308  // ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as
  1309  // specified by the OpenSSL DSA man page.
  1310  func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) {
  1311  	var k struct {
  1312  		Version int
  1313  		P       *big.Int
  1314  		Q       *big.Int
  1315  		G       *big.Int
  1316  		Pub     *big.Int
  1317  		Priv    *big.Int
  1318  	}
  1319  	rest, err := asn1.Unmarshal(der, &k)
  1320  	if err != nil {
  1321  		return nil, errors.New("ssh: failed to parse DSA key: " + err.Error())
  1322  	}
  1323  	if len(rest) > 0 {
  1324  		return nil, errors.New("ssh: garbage after DSA key")
  1325  	}
  1326  
  1327  	return &dsa.PrivateKey{
  1328  		PublicKey: dsa.PublicKey{
  1329  			Parameters: dsa.Parameters{
  1330  				P: k.P,
  1331  				Q: k.Q,
  1332  				G: k.G,
  1333  			},
  1334  			Y: k.Pub,
  1335  		},
  1336  		X: k.Priv,
  1337  	}, nil
  1338  }
  1339  
  1340  func unencryptedOpenSSHKey(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
  1341  	if kdfName != "none" || cipherName != "none" {
  1342  		return nil, &PassphraseMissingError{}
  1343  	}
  1344  	if kdfOpts != "" {
  1345  		return nil, errors.New("ssh: invalid openssh private key")
  1346  	}
  1347  	return privKeyBlock, nil
  1348  }
  1349  
  1350  func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc {
  1351  	return func(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
  1352  		if kdfName == "none" || cipherName == "none" {
  1353  			return nil, errors.New("ssh: key is not password protected")
  1354  		}
  1355  		if kdfName != "bcrypt" {
  1356  			return nil, fmt.Errorf("ssh: unknown KDF %q, only supports %q", kdfName, "bcrypt")
  1357  		}
  1358  
  1359  		var opts struct {
  1360  			Salt   string
  1361  			Rounds uint32
  1362  		}
  1363  		if err := Unmarshal([]byte(kdfOpts), &opts); err != nil {
  1364  			return nil, err
  1365  		}
  1366  
  1367  		k, err := bcrypt_pbkdf.Key(passphrase, []byte(opts.Salt), int(opts.Rounds), 32+16)
  1368  		if err != nil {
  1369  			return nil, err
  1370  		}
  1371  		key, iv := k[:32], k[32:]
  1372  
  1373  		c, err := aes.NewCipher(key)
  1374  		if err != nil {
  1375  			return nil, err
  1376  		}
  1377  		switch cipherName {
  1378  		case "aes256-ctr":
  1379  			ctr := cipher.NewCTR(c, iv)
  1380  			ctr.XORKeyStream(privKeyBlock, privKeyBlock)
  1381  		case "aes256-cbc":
  1382  			if len(privKeyBlock)%c.BlockSize() != 0 {
  1383  				return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size")
  1384  			}
  1385  			cbc := cipher.NewCBCDecrypter(c, iv)
  1386  			cbc.CryptBlocks(privKeyBlock, privKeyBlock)
  1387  		default:
  1388  			return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc")
  1389  		}
  1390  
  1391  		return privKeyBlock, nil
  1392  	}
  1393  }
  1394  
  1395  func unencryptedOpenSSHMarshaler(privKeyBlock []byte) ([]byte, string, string, string, error) {
  1396  	key := generateOpenSSHPadding(privKeyBlock, 8)
  1397  	return key, "none", "none", "", nil
  1398  }
  1399  
  1400  func passphraseProtectedOpenSSHMarshaler(passphrase []byte) openSSHEncryptFunc {
  1401  	return func(privKeyBlock []byte) ([]byte, string, string, string, error) {
  1402  		salt := make([]byte, 16)
  1403  		if _, err := rand.Read(salt); err != nil {
  1404  			return nil, "", "", "", err
  1405  		}
  1406  
  1407  		opts := struct {
  1408  			Salt   []byte
  1409  			Rounds uint32
  1410  		}{salt, 16}
  1411  
  1412  		// Derive key to encrypt the private key block.
  1413  		k, err := bcrypt_pbkdf.Key(passphrase, salt, int(opts.Rounds), 32+aes.BlockSize)
  1414  		if err != nil {
  1415  			return nil, "", "", "", err
  1416  		}
  1417  
  1418  		// Add padding matching the block size of AES.
  1419  		keyBlock := generateOpenSSHPadding(privKeyBlock, aes.BlockSize)
  1420  
  1421  		// Encrypt the private key using the derived secret.
  1422  
  1423  		dst := make([]byte, len(keyBlock))
  1424  		key, iv := k[:32], k[32:]
  1425  		block, err := aes.NewCipher(key)
  1426  		if err != nil {
  1427  			return nil, "", "", "", err
  1428  		}
  1429  
  1430  		stream := cipher.NewCTR(block, iv)
  1431  		stream.XORKeyStream(dst, keyBlock)
  1432  
  1433  		return dst, "aes256-ctr", "bcrypt", string(Marshal(opts)), nil
  1434  	}
  1435  }
  1436  
  1437  const privateKeyAuthMagic = "openssh-key-v1\x00"
  1438  
  1439  type openSSHDecryptFunc func(CipherName, KdfName, KdfOpts string, PrivKeyBlock []byte) ([]byte, error)
  1440  type openSSHEncryptFunc func(PrivKeyBlock []byte) (ProtectedKeyBlock []byte, cipherName, kdfName, kdfOptions string, err error)
  1441  
  1442  type openSSHEncryptedPrivateKey struct {
  1443  	CipherName   string
  1444  	KdfName      string
  1445  	KdfOpts      string
  1446  	NumKeys      uint32
  1447  	PubKey       []byte
  1448  	PrivKeyBlock []byte
  1449  }
  1450  
  1451  type openSSHPrivateKey struct {
  1452  	Check1  uint32
  1453  	Check2  uint32
  1454  	Keytype string
  1455  	Rest    []byte `ssh:"rest"`
  1456  }
  1457  
  1458  type openSSHRSAPrivateKey struct {
  1459  	N       *big.Int
  1460  	E       *big.Int
  1461  	D       *big.Int
  1462  	Iqmp    *big.Int
  1463  	P       *big.Int
  1464  	Q       *big.Int
  1465  	Comment string
  1466  	Pad     []byte `ssh:"rest"`
  1467  }
  1468  
  1469  type openSSHEd25519PrivateKey struct {
  1470  	Pub     []byte
  1471  	Priv    []byte
  1472  	Comment string
  1473  	Pad     []byte `ssh:"rest"`
  1474  }
  1475  
  1476  type openSSHECDSAPrivateKey struct {
  1477  	Curve   string
  1478  	Pub     []byte
  1479  	D       *big.Int
  1480  	Comment string
  1481  	Pad     []byte `ssh:"rest"`
  1482  }
  1483  
  1484  // parseOpenSSHPrivateKey parses an OpenSSH private key, using the decrypt
  1485  // function to unwrap the encrypted portion. unencryptedOpenSSHKey can be used
  1486  // as the decrypt function to parse an unencrypted private key. See
  1487  // https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key.
  1488  func parseOpenSSHPrivateKey(key []byte, decrypt openSSHDecryptFunc) (crypto.PrivateKey, error) {
  1489  	if len(key) < len(privateKeyAuthMagic) || string(key[:len(privateKeyAuthMagic)]) != privateKeyAuthMagic {
  1490  		return nil, errors.New("ssh: invalid openssh private key format")
  1491  	}
  1492  	remaining := key[len(privateKeyAuthMagic):]
  1493  
  1494  	var w openSSHEncryptedPrivateKey
  1495  	if err := Unmarshal(remaining, &w); err != nil {
  1496  		return nil, err
  1497  	}
  1498  	if w.NumKeys != 1 {
  1499  		// We only support single key files, and so does OpenSSH.
  1500  		// https://github.com/openssh/openssh-portable/blob/4103a3ec7/sshkey.c#L4171
  1501  		return nil, errors.New("ssh: multi-key files are not supported")
  1502  	}
  1503  
  1504  	privKeyBlock, err := decrypt(w.CipherName, w.KdfName, w.KdfOpts, w.PrivKeyBlock)
  1505  	if err != nil {
  1506  		if err, ok := err.(*PassphraseMissingError); ok {
  1507  			pub, errPub := ParsePublicKey(w.PubKey)
  1508  			if errPub != nil {
  1509  				return nil, fmt.Errorf("ssh: failed to parse embedded public key: %v", errPub)
  1510  			}
  1511  			err.PublicKey = pub
  1512  		}
  1513  		return nil, err
  1514  	}
  1515  
  1516  	var pk1 openSSHPrivateKey
  1517  	if err := Unmarshal(privKeyBlock, &pk1); err != nil || pk1.Check1 != pk1.Check2 {
  1518  		if w.CipherName != "none" {
  1519  			return nil, x509.IncorrectPasswordError
  1520  		}
  1521  		return nil, errors.New("ssh: malformed OpenSSH key")
  1522  	}
  1523  
  1524  	switch pk1.Keytype {
  1525  	case KeyAlgoRSA:
  1526  		var key openSSHRSAPrivateKey
  1527  		if err := Unmarshal(pk1.Rest, &key); err != nil {
  1528  			return nil, err
  1529  		}
  1530  
  1531  		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
  1532  			return nil, err
  1533  		}
  1534  
  1535  		pk := &rsa.PrivateKey{
  1536  			PublicKey: rsa.PublicKey{
  1537  				N: key.N,
  1538  				E: int(key.E.Int64()),
  1539  			},
  1540  			D:      key.D,
  1541  			Primes: []*big.Int{key.P, key.Q},
  1542  		}
  1543  
  1544  		if err := pk.Validate(); err != nil {
  1545  			return nil, err
  1546  		}
  1547  
  1548  		pk.Precompute()
  1549  
  1550  		return pk, nil
  1551  	case KeyAlgoED25519:
  1552  		var key openSSHEd25519PrivateKey
  1553  		if err := Unmarshal(pk1.Rest, &key); err != nil {
  1554  			return nil, err
  1555  		}
  1556  
  1557  		if len(key.Priv) != ed25519.PrivateKeySize {
  1558  			return nil, errors.New("ssh: private key unexpected length")
  1559  		}
  1560  
  1561  		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
  1562  			return nil, err
  1563  		}
  1564  
  1565  		pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize))
  1566  		copy(pk, key.Priv)
  1567  		return &pk, nil
  1568  	case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
  1569  		var key openSSHECDSAPrivateKey
  1570  		if err := Unmarshal(pk1.Rest, &key); err != nil {
  1571  			return nil, err
  1572  		}
  1573  
  1574  		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
  1575  			return nil, err
  1576  		}
  1577  
  1578  		var curve elliptic.Curve
  1579  		switch key.Curve {
  1580  		case "nistp256":
  1581  			curve = elliptic.P256()
  1582  		case "nistp384":
  1583  			curve = elliptic.P384()
  1584  		case "nistp521":
  1585  			curve = elliptic.P521()
  1586  		default:
  1587  			return nil, errors.New("ssh: unhandled elliptic curve: " + key.Curve)
  1588  		}
  1589  
  1590  		X, Y := elliptic.Unmarshal(curve, key.Pub)
  1591  		if X == nil || Y == nil {
  1592  			return nil, errors.New("ssh: failed to unmarshal public key")
  1593  		}
  1594  
  1595  		if key.D.Cmp(curve.Params().N) >= 0 {
  1596  			return nil, errors.New("ssh: scalar is out of range")
  1597  		}
  1598  
  1599  		x, y := curve.ScalarBaseMult(key.D.Bytes())
  1600  		if x.Cmp(X) != 0 || y.Cmp(Y) != 0 {
  1601  			return nil, errors.New("ssh: public key does not match private key")
  1602  		}
  1603  
  1604  		return &ecdsa.PrivateKey{
  1605  			PublicKey: ecdsa.PublicKey{
  1606  				Curve: curve,
  1607  				X:     X,
  1608  				Y:     Y,
  1609  			},
  1610  			D: key.D,
  1611  		}, nil
  1612  	default:
  1613  		return nil, errors.New("ssh: unhandled key type")
  1614  	}
  1615  }
  1616  
  1617  func marshalOpenSSHPrivateKey(key crypto.PrivateKey, comment string, encrypt openSSHEncryptFunc) (*pem.Block, error) {
  1618  	var w openSSHEncryptedPrivateKey
  1619  	var pk1 openSSHPrivateKey
  1620  
  1621  	// Random check bytes.
  1622  	var check uint32
  1623  	if err := binary.Read(rand.Reader, binary.BigEndian, &check); err != nil {
  1624  		return nil, err
  1625  	}
  1626  
  1627  	pk1.Check1 = check
  1628  	pk1.Check2 = check
  1629  	w.NumKeys = 1
  1630  
  1631  	// Use a []byte directly on ed25519 keys.
  1632  	if k, ok := key.(*ed25519.PrivateKey); ok {
  1633  		key = *k
  1634  	}
  1635  
  1636  	switch k := key.(type) {
  1637  	case *rsa.PrivateKey:
  1638  		E := new(big.Int).SetInt64(int64(k.PublicKey.E))
  1639  		// Marshal public key:
  1640  		// E and N are in reversed order in the public and private key.
  1641  		pubKey := struct {
  1642  			KeyType string
  1643  			E       *big.Int
  1644  			N       *big.Int
  1645  		}{
  1646  			KeyAlgoRSA,
  1647  			E, k.PublicKey.N,
  1648  		}
  1649  		w.PubKey = Marshal(pubKey)
  1650  
  1651  		// Marshal private key.
  1652  		key := openSSHRSAPrivateKey{
  1653  			N:       k.PublicKey.N,
  1654  			E:       E,
  1655  			D:       k.D,
  1656  			Iqmp:    k.Precomputed.Qinv,
  1657  			P:       k.Primes[0],
  1658  			Q:       k.Primes[1],
  1659  			Comment: comment,
  1660  		}
  1661  		pk1.Keytype = KeyAlgoRSA
  1662  		pk1.Rest = Marshal(key)
  1663  	case ed25519.PrivateKey:
  1664  		pub := make([]byte, ed25519.PublicKeySize)
  1665  		priv := make([]byte, ed25519.PrivateKeySize)
  1666  		copy(pub, k[32:])
  1667  		copy(priv, k)
  1668  
  1669  		// Marshal public key.
  1670  		pubKey := struct {
  1671  			KeyType string
  1672  			Pub     []byte
  1673  		}{
  1674  			KeyAlgoED25519, pub,
  1675  		}
  1676  		w.PubKey = Marshal(pubKey)
  1677  
  1678  		// Marshal private key.
  1679  		key := openSSHEd25519PrivateKey{
  1680  			Pub:     pub,
  1681  			Priv:    priv,
  1682  			Comment: comment,
  1683  		}
  1684  		pk1.Keytype = KeyAlgoED25519
  1685  		pk1.Rest = Marshal(key)
  1686  	case *ecdsa.PrivateKey:
  1687  		var curve, keyType string
  1688  		switch name := k.Curve.Params().Name; name {
  1689  		case "P-256":
  1690  			curve = "nistp256"
  1691  			keyType = KeyAlgoECDSA256
  1692  		case "P-384":
  1693  			curve = "nistp384"
  1694  			keyType = KeyAlgoECDSA384
  1695  		case "P-521":
  1696  			curve = "nistp521"
  1697  			keyType = KeyAlgoECDSA521
  1698  		default:
  1699  			return nil, errors.New("ssh: unhandled elliptic curve " + name)
  1700  		}
  1701  
  1702  		pub := elliptic.Marshal(k.Curve, k.PublicKey.X, k.PublicKey.Y)
  1703  
  1704  		// Marshal public key.
  1705  		pubKey := struct {
  1706  			KeyType string
  1707  			Curve   string
  1708  			Pub     []byte
  1709  		}{
  1710  			keyType, curve, pub,
  1711  		}
  1712  		w.PubKey = Marshal(pubKey)
  1713  
  1714  		// Marshal private key.
  1715  		key := openSSHECDSAPrivateKey{
  1716  			Curve:   curve,
  1717  			Pub:     pub,
  1718  			D:       k.D,
  1719  			Comment: comment,
  1720  		}
  1721  		pk1.Keytype = keyType
  1722  		pk1.Rest = Marshal(key)
  1723  	default:
  1724  		return nil, fmt.Errorf("ssh: unsupported key type %T", k)
  1725  	}
  1726  
  1727  	var err error
  1728  	// Add padding and encrypt the key if necessary.
  1729  	w.PrivKeyBlock, w.CipherName, w.KdfName, w.KdfOpts, err = encrypt(Marshal(pk1))
  1730  	if err != nil {
  1731  		return nil, err
  1732  	}
  1733  
  1734  	b := Marshal(w)
  1735  	block := &pem.Block{
  1736  		Type:  "OPENSSH PRIVATE KEY",
  1737  		Bytes: append([]byte(privateKeyAuthMagic), b...),
  1738  	}
  1739  	return block, nil
  1740  }
  1741  
  1742  func checkOpenSSHKeyPadding(pad []byte) error {
  1743  	for i, b := range pad {
  1744  		if int(b) != i+1 {
  1745  			return errors.New("ssh: padding not as expected")
  1746  		}
  1747  	}
  1748  	return nil
  1749  }
  1750  
  1751  func generateOpenSSHPadding(block []byte, blockSize int) []byte {
  1752  	for i, l := 0, len(block); (l+i)%blockSize != 0; i++ {
  1753  		block = append(block, byte(i+1))
  1754  	}
  1755  	return block
  1756  }
  1757  
  1758  // FingerprintLegacyMD5 returns the user presentation of the key's
  1759  // fingerprint as described by RFC 4716 section 4.
  1760  func FingerprintLegacyMD5(pubKey PublicKey) string {
  1761  	md5sum := md5.Sum(pubKey.Marshal())
  1762  	hexarray := make([]string, len(md5sum))
  1763  	for i, c := range md5sum {
  1764  		hexarray[i] = hex.EncodeToString([]byte{c})
  1765  	}
  1766  	return strings.Join(hexarray, ":")
  1767  }
  1768  
  1769  // FingerprintSHA256 returns the user presentation of the key's
  1770  // fingerprint as unpadded base64 encoded sha256 hash.
  1771  // This format was introduced from OpenSSH 6.8.
  1772  // https://www.openssh.com/txt/release-6.8
  1773  // https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding)
  1774  func FingerprintSHA256(pubKey PublicKey) string {
  1775  	sha256sum := sha256.Sum256(pubKey.Marshal())
  1776  	hash := base64.RawStdEncoding.EncodeToString(sha256sum[:])
  1777  	return "SHA256:" + hash
  1778  }
  1779  

View as plain text