/* Copyright Suzhou Tongji Fintech Research Institute 2017 All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package gmtls import ( "crypto" "crypto/hmac" "crypto/md5" "crypto/sha1" "crypto/sha256" "crypto/sha512" "errors" "fmt" "hash" "github.com/tjfoc/gmsm/sm3" ) // Split a premaster secret in two as specified in RFC 4346, section 5. func splitPreMasterSecret(secret []byte) (s1, s2 []byte) { s1 = secret[0 : (len(secret)+1)/2] s2 = secret[len(secret)/2:] return } // pHash implements the P_hash function, as defined in RFC 4346, section 5. func pHash(result, secret, seed []byte, hash func() hash.Hash) { h := hmac.New(hash, secret) h.Write(seed) a := h.Sum(nil) j := 0 for j < len(result) { h.Reset() h.Write(a) h.Write(seed) b := h.Sum(nil) todo := len(b) if j+todo > len(result) { todo = len(result) - j } copy(result[j:j+todo], b) j += todo h.Reset() h.Write(a) a = h.Sum(nil) } } // prf10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, section 5. func prf10(result, secret, label, seed []byte) { hashSHA1 := sha1.New hashMD5 := md5.New labelAndSeed := make([]byte, len(label)+len(seed)) copy(labelAndSeed, label) copy(labelAndSeed[len(label):], seed) s1, s2 := splitPreMasterSecret(secret) pHash(result, s1, labelAndSeed, hashMD5) result2 := make([]byte, len(result)) pHash(result2, s2, labelAndSeed, hashSHA1) for i, b := range result2 { result[i] ^= b } } // prf12 implements the TLS 1.2 pseudo-random function, as defined in RFC 5246, section 5. func prf12(hashFunc func() hash.Hash) func(result, secret, label, seed []byte) { return func(result, secret, label, seed []byte) { labelAndSeed := make([]byte, len(label)+len(seed)) copy(labelAndSeed, label) copy(labelAndSeed[len(label):], seed) pHash(result, secret, labelAndSeed, hashFunc) } } // prf30 implements the SSL 3.0 pseudo-random function, as defined in // www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 6. func prf30(result, secret, label, seed []byte) { hashSHA1 := sha1.New() hashMD5 := md5.New() done := 0 i := 0 // RFC 5246 section 6.3 says that the largest PRF output needed is 128 // bytes. Since no more ciphersuites will be added to SSLv3, this will // remain true. Each iteration gives us 16 bytes so 10 iterations will // be sufficient. var b [11]byte for done < len(result) { for j := 0; j <= i; j++ { b[j] = 'A' + byte(i) } hashSHA1.Reset() hashSHA1.Write(b[:i+1]) hashSHA1.Write(secret) hashSHA1.Write(seed) digest := hashSHA1.Sum(nil) hashMD5.Reset() hashMD5.Write(secret) hashMD5.Write(digest) done += copy(result[done:], hashMD5.Sum(nil)) i++ } } const ( tlsRandomLength = 32 // Length of a random nonce in TLS 1.1. masterSecretLength = 48 // Length of a master secret in TLS 1.1. finishedVerifyLength = 12 // Length of verify_data in a Finished message. ) var masterSecretLabel = []byte("master secret") var keyExpansionLabel = []byte("key expansion") var clientFinishedLabel = []byte("client finished") var serverFinishedLabel = []byte("server finished") func prfAndHashForGM() func(result, secret, label, seed []byte) { return prf12(sm3.New) } func prfAndHashForVersion(version uint16, suite *cipherSuite) (func(result, secret, label, seed []byte), crypto.Hash) { switch version { case VersionSSL30: return prf30, crypto.Hash(0) case VersionTLS10, VersionTLS11: return prf10, crypto.Hash(0) case VersionTLS12: if suite.flags&suiteSHA384 != 0 { return prf12(sha512.New384), crypto.SHA384 } return prf12(sha256.New), crypto.SHA256 default: panic("unknown version") } } func prfForVersion(version uint16, suite *cipherSuite) func(result, secret, label, seed []byte) { var prf func(result, secret, label, seed []byte) if version == VersionGMSSL { prf = prfAndHashForGM() } else { prf, _ = prfAndHashForVersion(version, suite) } return prf } // masterFromPreMasterSecret generates the master secret from the pre-master // secret. See http://tools.ietf.org/html/rfc5246#section-8.1 func masterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, clientRandom, serverRandom []byte) []byte { seed := make([]byte, 0, len(clientRandom)+len(serverRandom)) seed = append(seed, clientRandom...) seed = append(seed, serverRandom...) masterSecret := make([]byte, masterSecretLength) prfForVersion(version, suite)(masterSecret, preMasterSecret, masterSecretLabel, seed) return masterSecret } // keysFromMasterSecret generates the connection keys from the master // secret, given the lengths of the MAC key, cipher key and IV, as defined in // RFC 2246, section 6.3. func keysFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) { seed := make([]byte, 0, len(serverRandom)+len(clientRandom)) seed = append(seed, serverRandom...) seed = append(seed, clientRandom...) n := 2*macLen + 2*keyLen + 2*ivLen keyMaterial := make([]byte, n) prfForVersion(version, suite)(keyMaterial, masterSecret, keyExpansionLabel, seed) clientMAC = keyMaterial[:macLen] keyMaterial = keyMaterial[macLen:] serverMAC = keyMaterial[:macLen] keyMaterial = keyMaterial[macLen:] clientKey = keyMaterial[:keyLen] keyMaterial = keyMaterial[keyLen:] serverKey = keyMaterial[:keyLen] keyMaterial = keyMaterial[keyLen:] clientIV = keyMaterial[:ivLen] keyMaterial = keyMaterial[ivLen:] serverIV = keyMaterial[:ivLen] return } // lookupTLSHash looks up the corresponding crypto.Hash for a given // TLS hash identifier. func lookupTLSHash(signatureAlgorithm SignatureScheme) (crypto.Hash, error) { switch signatureAlgorithm { case PKCS1WithSHA1, ECDSAWithSHA1: return crypto.SHA1, nil case PKCS1WithSHA256, PSSWithSHA256, ECDSAWithP256AndSHA256: return crypto.SHA256, nil case PKCS1WithSHA384, PSSWithSHA384, ECDSAWithP384AndSHA384: return crypto.SHA384, nil case PKCS1WithSHA512, PSSWithSHA512, ECDSAWithP521AndSHA512: return crypto.SHA512, nil default: return 0, fmt.Errorf("tls: unsupported signature algorithm: %#04x", signatureAlgorithm) } } func newFinishedHash(version uint16, cipherSuite *cipherSuite) finishedHash { var buffer []byte if version == VersionSSL30 || version >= VersionTLS12 { buffer = []byte{} } var prf func(result, secret, label, seed []byte) if version == VersionGMSSL { prf = prfAndHashForGM() return finishedHash{sm3.New(), sm3.New(), nil, nil, buffer, version, prf} } else { prf, hash := prfAndHashForVersion(version, cipherSuite) if hash != 0 { return finishedHash{hash.New(), hash.New(), nil, nil, buffer, version, prf} } } return finishedHash{sha1.New(), sha1.New(), md5.New(), md5.New(), buffer, version, prf} } // A finishedHash calculates the hash of a set of handshake messages suitable // for including in a Finished message. type finishedHash struct { client hash.Hash server hash.Hash // Prior to TLS 1.2, an additional MD5 hash is required. clientMD5 hash.Hash serverMD5 hash.Hash // In TLS 1.2, a full buffer is sadly required. buffer []byte version uint16 prf func(result, secret, label, seed []byte) } func (h *finishedHash) Write(msg []byte) (n int, err error) { h.client.Write(msg) h.server.Write(msg) if h.version < VersionTLS12 { h.clientMD5.Write(msg) h.serverMD5.Write(msg) } if h.buffer != nil { h.buffer = append(h.buffer, msg...) } return len(msg), nil } func (h finishedHash) Sum() []byte { if h.version >= VersionTLS12 || h.version == VersionGMSSL { return h.client.Sum(nil) } out := make([]byte, 0, md5.Size+sha1.Size) out = h.clientMD5.Sum(out) return h.client.Sum(out) } // finishedSum30 calculates the contents of the verify_data member of a SSLv3 // Finished message given the MD5 and SHA1 hashes of a set of handshake // messages. func finishedSum30(md5, sha1 hash.Hash, masterSecret []byte, magic []byte) []byte { md5.Write(magic) md5.Write(masterSecret) md5.Write(ssl30Pad1[:]) md5Digest := md5.Sum(nil) md5.Reset() md5.Write(masterSecret) md5.Write(ssl30Pad2[:]) md5.Write(md5Digest) md5Digest = md5.Sum(nil) sha1.Write(magic) sha1.Write(masterSecret) sha1.Write(ssl30Pad1[:40]) sha1Digest := sha1.Sum(nil) sha1.Reset() sha1.Write(masterSecret) sha1.Write(ssl30Pad2[:40]) sha1.Write(sha1Digest) sha1Digest = sha1.Sum(nil) ret := make([]byte, len(md5Digest)+len(sha1Digest)) copy(ret, md5Digest) copy(ret[len(md5Digest):], sha1Digest) return ret } var ssl3ClientFinishedMagic = [4]byte{0x43, 0x4c, 0x4e, 0x54} var ssl3ServerFinishedMagic = [4]byte{0x53, 0x52, 0x56, 0x52} // clientSum returns the contents of the verify_data member of a client's // Finished message. func (h finishedHash) clientSum(masterSecret []byte) []byte { if h.version == VersionSSL30 { return finishedSum30(h.clientMD5, h.client, masterSecret, ssl3ClientFinishedMagic[:]) } out := make([]byte, finishedVerifyLength) h.prf(out, masterSecret, clientFinishedLabel, h.Sum()) return out } // serverSum returns the contents of the verify_data member of a server's // Finished message. func (h finishedHash) serverSum(masterSecret []byte) []byte { if h.version == VersionSSL30 { return finishedSum30(h.serverMD5, h.server, masterSecret, ssl3ServerFinishedMagic[:]) } out := make([]byte, finishedVerifyLength) h.prf(out, masterSecret, serverFinishedLabel, h.Sum()) return out } // hashForClientCertificate returns a digest, hash function, and TLS 1.2 hash // id suitable for signing by a TLS client certificate. func (h finishedHash) hashForClientCertificate(sigType uint8, hashAlg crypto.Hash, masterSecret []byte) ([]byte, error) { if (h.version == VersionSSL30 || h.version >= VersionTLS12) && h.buffer == nil { panic("a handshake hash for a client-certificate was requested after discarding the handshake buffer") } if h.version == VersionSSL30 { if sigType != signaturePKCS1v15 { return nil, errors.New("tls: unsupported signature type for client certificate") } md5Hash := md5.New() md5Hash.Write(h.buffer) sha1Hash := sha1.New() sha1Hash.Write(h.buffer) return finishedSum30(md5Hash, sha1Hash, masterSecret, nil), nil } if h.version >= VersionTLS12 { hash := hashAlg.New() hash.Write(h.buffer) return hash.Sum(nil), nil } if sigType == signatureECDSA { return h.server.Sum(nil), nil } return h.Sum(), nil } // discardHandshakeBuffer is called when there is no more need to // buffer the entirety of the handshake messages. func (h *finishedHash) discardHandshakeBuffer() { h.buffer = nil } // noExportedKeyingMaterial is used as a value of // ConnectionState.ekm when renegotation is enabled and thus // we wish to fail all key-material export requests. func noExportedKeyingMaterial(label string, context []byte, length int) ([]byte, error) { return nil, errors.New("crypto/tls: ExportKeyingMaterial is unavailable when renegotiation is enabled") } // ekmFromMasterSecret generates exported keying material as defined in // https://tools.ietf.org/html/rfc5705. func ekmFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte) func(string, []byte, int) ([]byte, error) { return func(label string, context []byte, length int) ([]byte, error) { switch label { case "client finished", "server finished", "master secret", "key expansion": // These values are reserved and may not be used. return nil, fmt.Errorf("crypto/tls: reserved ExportKeyingMaterial label: %s", label) } seedLen := len(serverRandom) + len(clientRandom) if context != nil { seedLen += 2 + len(context) } seed := make([]byte, 0, seedLen) seed = append(seed, clientRandom...) seed = append(seed, serverRandom...) if context != nil { if len(context) >= 1<<16 { return nil, fmt.Errorf("crypto/tls: ExportKeyingMaterial context too long") } seed = append(seed, byte(len(context)>>8), byte(len(context))) seed = append(seed, context...) } keyMaterial := make([]byte, length) prfForVersion(version, suite)(keyMaterial, masterSecret, []byte(label), seed) return keyMaterial, nil } }