/*Copyright Suzhou Tongji Fintech Research Institute 2017 All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package gmtls import ( "bytes" "crypto/cipher" "crypto/subtle" "errors" "fmt" "io" "net" "sync" "sync/atomic" "time" "github.com/tjfoc/gmsm/x509" ) // A Conn represents a secured connection. // It implements the net.Conn interface. type Conn struct { // constant conn net.Conn isClient bool // handshakeStatus is 1 if the connection is currently transferring // application data (i.e. is not currently processing a handshake). // This field is only to be accessed with sync/atomic. handshakeStatus uint32 // constant after handshake; protected by handshakeMutex handshakeMutex sync.Mutex handshakeErr error // error resulting from handshake vers uint16 // TLS version haveVers bool // version has been negotiated config *Config // configuration passed to constructor // handshakes counts the number of handshakes performed on the // connection so far. If renegotiation is disabled then this is either // zero or one. handshakes int didResume bool // whether this connection was a session resumption cipherSuite uint16 ocspResponse []byte // stapled OCSP response scts [][]byte // signed certificate timestamps from server peerCertificates []*x509.Certificate // verifiedChains contains the certificate chains that we built, as // opposed to the ones presented by the server. verifiedChains [][]*x509.Certificate // serverName contains the server name indicated by the client, if any. serverName string // secureRenegotiation is true if the server echoed the secure // renegotiation extension. (This is meaningless as a server because // renegotiation is not supported in that case.) secureRenegotiation bool // ekm is a closure for exporting keying material. ekm func(label string, context []byte, length int) ([]byte, error) // clientFinishedIsFirst is true if the client sent the first Finished // message during the most recent handshake. This is recorded because // the first transmitted Finished message is the tls-unique // channel-binding value. clientFinishedIsFirst bool // closeNotifyErr is any error from sending the alertCloseNotify record. closeNotifyErr error // closeNotifySent is true if the Conn attempted to send an // alertCloseNotify record. closeNotifySent bool // clientFinished and serverFinished contain the Finished message sent // by the client or server in the most recent handshake. This is // retained to support the renegotiation extension and tls-unique // channel-binding. clientFinished [12]byte serverFinished [12]byte clientProtocol string clientProtocolFallback bool // input/output in, out halfConn rawInput *block // raw input, right off the wire input *block // application data waiting to be read hand bytes.Buffer // handshake data waiting to be read buffering bool // whether records are buffered in sendBuf sendBuf []byte // a buffer of records waiting to be sent // bytesSent counts the bytes of application data sent. // packetsSent counts packets. bytesSent int64 packetsSent int64 // warnCount counts the number of consecutive warning alerts received // by Conn.readRecord. Protected by in.Mutex. warnCount int // activeCall is an atomic int32; the low bit is whether Close has // been called. the rest of the bits are the number of goroutines // in Conn.Write. activeCall int32 tmp [16]byte } // Access to net.Conn methods. // Cannot just embed net.Conn because that would // export the struct field too. // LocalAddr returns the local network address. func (c *Conn) LocalAddr() net.Addr { return c.conn.LocalAddr() } // RemoteAddr returns the remote network address. func (c *Conn) RemoteAddr() net.Addr { return c.conn.RemoteAddr() } // SetDeadline sets the read and write deadlines associated with the connection. // A zero value for t means Read and Write will not time out. // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. func (c *Conn) SetDeadline(t time.Time) error { return c.conn.SetDeadline(t) } // SetReadDeadline sets the read deadline on the underlying connection. // A zero value for t means Read will not time out. func (c *Conn) SetReadDeadline(t time.Time) error { return c.conn.SetReadDeadline(t) } // SetWriteDeadline sets the write deadline on the underlying connection. // A zero value for t means Write will not time out. // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. func (c *Conn) SetWriteDeadline(t time.Time) error { return c.conn.SetWriteDeadline(t) } // A halfConn represents one direction of the record layer // connection, either sending or receiving. type halfConn struct { sync.Mutex err error // first permanent error version uint16 // protocol version cipher interface{} // cipher algorithm mac macFunction seq [8]byte // 64-bit sequence number bfree *block // list of free blocks additionalData [13]byte // to avoid allocs; interface method args escape nextCipher interface{} // next encryption state nextMac macFunction // next MAC algorithm // used to save allocating a new buffer for each MAC. inDigestBuf, outDigestBuf []byte } func (hc *halfConn) setErrorLocked(err error) error { hc.err = err return err } // prepareCipherSpec sets the encryption and MAC states // that a subsequent changeCipherSpec will use. func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) { hc.version = version hc.nextCipher = cipher hc.nextMac = mac } // changeCipherSpec changes the encryption and MAC states // to the ones previously passed to prepareCipherSpec. func (hc *halfConn) changeCipherSpec() error { if hc.nextCipher == nil { return alertInternalError } hc.cipher = hc.nextCipher hc.mac = hc.nextMac hc.nextCipher = nil hc.nextMac = nil for i := range hc.seq { hc.seq[i] = 0 } return nil } // incSeq increments the sequence number. func (hc *halfConn) incSeq() { for i := 7; i >= 0; i-- { hc.seq[i]++ if hc.seq[i] != 0 { return } } // Not allowed to let sequence number wrap. // Instead, must renegotiate before it does. // Not likely enough to bother. panic("TLS: sequence number wraparound") } // extractPadding returns, in constant time, the length of the padding to remove // from the end of payload. It also returns a byte which is equal to 255 if the // padding was valid and 0 otherwise. See RFC 2246, section 6.2.3.2 func extractPadding(payload []byte) (toRemove int, good byte) { if len(payload) < 1 { return 0, 0 } paddingLen := payload[len(payload)-1] t := uint(len(payload)-1) - uint(paddingLen) // if len(payload) >= (paddingLen - 1) then the MSB of t is zero good = byte(int32(^t) >> 31) // The maximum possible padding length plus the actual length field toCheck := 256 // The length of the padded data is public, so we can use an if here if toCheck > len(payload) { toCheck = len(payload) } for i := 0; i < toCheck; i++ { t := uint(paddingLen) - uint(i) // if i <= paddingLen then the MSB of t is zero mask := byte(int32(^t) >> 31) b := payload[len(payload)-1-i] good &^= mask&paddingLen ^ mask&b } // We AND together the bits of good and replicate the result across // all the bits. good &= good << 4 good &= good << 2 good &= good << 1 good = uint8(int8(good) >> 7) toRemove = int(paddingLen) + 1 return } // extractPaddingSSL30 is a replacement for extractPadding in the case that the // protocol version is SSLv3. In this version, the contents of the padding // are random and cannot be checked. func extractPaddingSSL30(payload []byte) (toRemove int, good byte) { if len(payload) < 1 { return 0, 0 } paddingLen := int(payload[len(payload)-1]) + 1 if paddingLen > len(payload) { return 0, 0 } return paddingLen, 255 } func roundUp(a, b int) int { return a + (b-a%b)%b } // cbcMode is an interface for block ciphers using cipher block chaining. type cbcMode interface { cipher.BlockMode SetIV([]byte) } // decrypt checks and strips the mac and decrypts the data in b. Returns a // success boolean, the number of bytes to skip from the start of the record in // order to get the application payload, and an optional alert value. func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) { // pull out payload payload := b.data[recordHeaderLen:] macSize := 0 if hc.mac != nil { macSize = hc.mac.Size() } paddingGood := byte(255) paddingLen := 0 explicitIVLen := 0 // decrypt if hc.cipher != nil { switch c := hc.cipher.(type) { case cipher.Stream: c.XORKeyStream(payload, payload) case aead: explicitIVLen = c.explicitNonceLen() if len(payload) < explicitIVLen { return false, 0, alertBadRecordMAC } nonce := payload[:explicitIVLen] payload = payload[explicitIVLen:] if len(nonce) == 0 { nonce = hc.seq[:] } copy(hc.additionalData[:], hc.seq[:]) copy(hc.additionalData[8:], b.data[:3]) n := len(payload) - c.Overhead() hc.additionalData[11] = byte(n >> 8) hc.additionalData[12] = byte(n) var err error payload, err = c.Open(payload[:0], nonce, payload, hc.additionalData[:]) if err != nil { return false, 0, alertBadRecordMAC } b.resize(recordHeaderLen + explicitIVLen + len(payload)) case cbcMode: blockSize := c.BlockSize() if hc.version >= VersionTLS11 || hc.version == VersionGMSSL { explicitIVLen = blockSize } if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) { return false, 0, alertBadRecordMAC } if explicitIVLen > 0 { c.SetIV(payload[:explicitIVLen]) payload = payload[explicitIVLen:] } c.CryptBlocks(payload, payload) if hc.version == VersionSSL30 { paddingLen, paddingGood = extractPaddingSSL30(payload) } else { paddingLen, paddingGood = extractPadding(payload) // To protect against CBC padding oracles like Lucky13, the data // past paddingLen (which is secret) is passed to the MAC // function as extra data, to be fed into the HMAC after // computing the digest. This makes the MAC constant time as // long as the digest computation is constant time and does not // affect the subsequent write. } default: panic("unknown cipher type") } } // check, strip mac if hc.mac != nil { if len(payload) < macSize { return false, 0, alertBadRecordMAC } // strip mac off payload, b.data n := len(payload) - macSize - paddingLen n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 } b.data[3] = byte(n >> 8) b.data[4] = byte(n) remoteMAC := payload[n : n+macSize] localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n], payload[n+macSize:]) if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 { return false, 0, alertBadRecordMAC } hc.inDigestBuf = localMAC b.resize(recordHeaderLen + explicitIVLen + n) } hc.incSeq() return true, recordHeaderLen + explicitIVLen, 0 } // padToBlockSize calculates the needed padding block, if any, for a payload. // On exit, prefix aliases payload and extends to the end of the last full // block of payload. finalBlock is a fresh slice which contains the contents of // any suffix of payload as well as the needed padding to make finalBlock a // full block. func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) { overrun := len(payload) % blockSize paddingLen := blockSize - overrun prefix = payload[:len(payload)-overrun] finalBlock = make([]byte, blockSize) copy(finalBlock, payload[len(payload)-overrun:]) for i := overrun; i < blockSize; i++ { finalBlock[i] = byte(paddingLen - 1) } return } // encrypt encrypts and macs the data in b. func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) { // mac if hc.mac != nil { mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:], nil) n := len(b.data) b.resize(n + len(mac)) copy(b.data[n:], mac) hc.outDigestBuf = mac } payload := b.data[recordHeaderLen:] // encrypt if hc.cipher != nil { switch c := hc.cipher.(type) { case cipher.Stream: c.XORKeyStream(payload, payload) case aead: payloadLen := len(b.data) - recordHeaderLen - explicitIVLen b.resize(len(b.data) + c.Overhead()) nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] if len(nonce) == 0 { nonce = hc.seq[:] } payload := b.data[recordHeaderLen+explicitIVLen:] payload = payload[:payloadLen] copy(hc.additionalData[:], hc.seq[:]) copy(hc.additionalData[8:], b.data[:3]) hc.additionalData[11] = byte(payloadLen >> 8) hc.additionalData[12] = byte(payloadLen) c.Seal(payload[:0], nonce, payload, hc.additionalData[:]) case cbcMode: blockSize := c.BlockSize() if explicitIVLen > 0 { c.SetIV(payload[:explicitIVLen]) payload = payload[explicitIVLen:] } prefix, finalBlock := padToBlockSize(payload, blockSize) b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock)) c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix) c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock) default: panic("unknown cipher type") } } // update length to include MAC and any block padding needed. n := len(b.data) - recordHeaderLen b.data[3] = byte(n >> 8) b.data[4] = byte(n) hc.incSeq() return true, 0 } // A block is a simple data buffer. type block struct { data []byte off int // index for Read link *block } // resize resizes block to be n bytes, growing if necessary. func (b *block) resize(n int) { if n > cap(b.data) { b.reserve(n) } b.data = b.data[0:n] } // reserve makes sure that block contains a capacity of at least n bytes. func (b *block) reserve(n int) { if cap(b.data) >= n { return } m := cap(b.data) if m == 0 { m = 1024 } for m < n { m *= 2 } data := make([]byte, len(b.data), m) copy(data, b.data) b.data = data } // readFromUntil reads from r into b until b contains at least n bytes // or else returns an error. func (b *block) readFromUntil(r io.Reader, n int) error { // quick case if len(b.data) >= n { return nil } // read until have enough. b.reserve(n) for { m, err := r.Read(b.data[len(b.data):cap(b.data)]) b.data = b.data[0 : len(b.data)+m] if len(b.data) >= n { // TODO(bradfitz,agl): slightly suspicious // that we're throwing away r.Read's err here. break } if err != nil { return err } } return nil } func (b *block) Read(p []byte) (n int, err error) { n = copy(p, b.data[b.off:]) b.off += n return } // newBlock allocates a new block, from hc's free list if possible. func (hc *halfConn) newBlock() *block { b := hc.bfree if b == nil { return new(block) } hc.bfree = b.link b.link = nil b.resize(0) return b } // freeBlock returns a block to hc's free list. // The protocol is such that each side only has a block or two on // its free list at a time, so there's no need to worry about // trimming the list, etc. func (hc *halfConn) freeBlock(b *block) { b.link = hc.bfree hc.bfree = b } // splitBlock splits a block after the first n bytes, // returning a block with those n bytes and a // block with the remainder. the latter may be nil. func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) { if len(b.data) <= n { return b, nil } bb := hc.newBlock() bb.resize(len(b.data) - n) copy(bb.data, b.data[n:]) b.data = b.data[0:n] return b, bb } // RecordHeaderError results when a TLS record header is invalid. type RecordHeaderError struct { // Msg contains a human readable string that describes the error. Msg string // RecordHeader contains the five bytes of TLS record header that // triggered the error. RecordHeader [5]byte } func (e RecordHeaderError) Error() string { return "tls: " + e.Msg } func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) { err.Msg = msg copy(err.RecordHeader[:], c.rawInput.data) return err } // readRecord reads the next TLS record from the connection // and updates the record layer state. func (c *Conn) readRecord(want recordType) error { // Caller must be in sync with connection: // handshake data if handshake not yet completed, // else application data. switch want { case recordTypeHandshake, recordTypeChangeCipherSpec: if c.handshakeComplete() { c.sendAlert(alertInternalError) return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested while not in handshake")) } case recordTypeApplicationData: if !c.handshakeComplete() { c.sendAlert(alertInternalError) return c.in.setErrorLocked(errors.New("tls: application data record requested while in handshake")) } default: c.sendAlert(alertInternalError) return c.in.setErrorLocked(errors.New("tls: unknown record type requested")) } Again: if c.rawInput == nil { c.rawInput = c.in.newBlock() } b := c.rawInput // Read header, payload. if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil { // RFC suggests that EOF without an alertCloseNotify is // an error, but popular web sites seem to do this, // so we can't make it an error. // if err == io.EOF { // err = io.ErrUnexpectedEOF // } if e, ok := err.(net.Error); !ok || !e.Temporary() { c.in.setErrorLocked(err) } return err } typ := recordType(b.data[0]) // No valid TLS record has a type of 0x80, however SSLv2 handshakes // start with a uint16 length where the MSB is set and the first record // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests // an SSLv2 client. if want == recordTypeHandshake && typ == 0x80 { c.sendAlert(alertProtocolVersion) return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received")) } vers := uint16(b.data[1])<<8 | uint16(b.data[2]) n := int(b.data[3])<<8 | int(b.data[4]) if c.haveVers && vers != c.vers { c.sendAlert(alertProtocolVersion) msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers) return c.in.setErrorLocked(c.newRecordHeaderError(msg)) } if n > maxCiphertext { c.sendAlert(alertRecordOverflow) msg := fmt.Sprintf("oversized record received with length %d", n) return c.in.setErrorLocked(c.newRecordHeaderError(msg)) } if !c.haveVers { // First message, be extra suspicious: this might not be a TLS // client. Bail out before reading a full 'body', if possible. // The current max version is 3.3 so if the version is >= 16.0, // it's probably not real. if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 { c.sendAlert(alertUnexpectedMessage) return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake")) } } if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil { if err == io.EOF { err = io.ErrUnexpectedEOF } if e, ok := err.(net.Error); !ok || !e.Temporary() { c.in.setErrorLocked(err) } return err } // Process message. b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n) ok, off, alertValue := c.in.decrypt(b) if !ok { c.in.freeBlock(b) return c.in.setErrorLocked(c.sendAlert(alertValue)) } b.off = off data := b.data[b.off:] if len(data) > maxPlaintext { err := c.sendAlert(alertRecordOverflow) c.in.freeBlock(b) return c.in.setErrorLocked(err) } if typ != recordTypeAlert && len(data) > 0 { // this is a valid non-alert message: reset the count of alerts c.warnCount = 0 } switch typ { default: c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) case recordTypeAlert: if len(data) != 2 { c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) break } if alert(data[1]) == alertCloseNotify { c.in.setErrorLocked(io.EOF) break } switch data[0] { case alertLevelWarning: // drop on the floor c.in.freeBlock(b) c.warnCount++ if c.warnCount > maxWarnAlertCount { c.sendAlert(alertUnexpectedMessage) return c.in.setErrorLocked(errors.New("tls: too many warn alerts")) } goto Again case alertLevelError: c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) default: c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } case recordTypeChangeCipherSpec: if typ != want || len(data) != 1 || data[0] != 1 { c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) break } // Handshake messages are not allowed to fragment across the CCS if c.hand.Len() > 0 { c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) break } err := c.in.changeCipherSpec() if err != nil { c.in.setErrorLocked(c.sendAlert(err.(alert))) } case recordTypeApplicationData: if typ != want { c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) break } c.input = b b = nil case recordTypeHandshake: // TODO(rsc): Should at least pick off connection close. if typ != want && !(c.isClient && c.config.Renegotiation != RenegotiateNever) { return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation)) } c.hand.Write(data) } if b != nil { c.in.freeBlock(b) } return c.in.err } // sendAlert sends a TLS alert message. func (c *Conn) sendAlertLocked(err alert) error { switch err { case alertNoRenegotiation, alertCloseNotify: c.tmp[0] = alertLevelWarning default: c.tmp[0] = alertLevelError } c.tmp[1] = byte(err) _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2]) if err == alertCloseNotify { // closeNotify is a special case in that it isn't an error. return writeErr } return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) } // sendAlert sends a TLS alert message. func (c *Conn) sendAlert(err alert) error { c.out.Lock() defer c.out.Unlock() return c.sendAlertLocked(err) } const ( // tcpMSSEstimate is a conservative estimate of the TCP maximum segment // size (MSS). A constant is used, rather than querying the kernel for // the actual MSS, to avoid complexity. The value here is the IPv6 // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40 // bytes) and a TCP header with timestamps (32 bytes). tcpMSSEstimate = 1208 // recordSizeBoostThreshold is the number of bytes of application data // sent after which the TLS record size will be increased to the // maximum. recordSizeBoostThreshold = 128 * 1024 ) // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the // next application data record. There is the following trade-off: // // - For latency-sensitive applications, such as web browsing, each TLS // record should fit in one TCP segment. // - For throughput-sensitive applications, such as large file transfers, // larger TLS records better amortize framing and encryption overheads. // // A simple heuristic that works well in practice is to use small records for // the first 1MB of data, then use larger records for subsequent data, and // reset back to smaller records after the connection becomes idle. See "High // Performance Web Networking", Chapter 4, or: // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/ // // In the interests of simplicity and determinism, this code does not attempt // to reset the record size once the connection is idle, however. func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int { if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData { return maxPlaintext } if c.bytesSent >= recordSizeBoostThreshold { return maxPlaintext } // Subtract TLS overheads to get the maximum payload size. macSize := 0 if c.out.mac != nil { macSize = c.out.mac.Size() } payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen if c.out.cipher != nil { switch ciph := c.out.cipher.(type) { case cipher.Stream: payloadBytes -= macSize case cipher.AEAD: payloadBytes -= ciph.Overhead() case cbcMode: blockSize := ciph.BlockSize() // The payload must fit in a multiple of blockSize, with // room for at least one padding byte. payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1 // The MAC is appended before padding so affects the // payload size directly. payloadBytes -= macSize default: panic("unknown cipher type") } } // Allow packet growth in arithmetic progression up to max. pkt := c.packetsSent c.packetsSent++ if pkt > 1000 { return maxPlaintext // avoid overflow in multiply below } n := payloadBytes * int(pkt+1) if n > maxPlaintext { n = maxPlaintext } return n } func (c *Conn) write(data []byte) (int, error) { if c.buffering { c.sendBuf = append(c.sendBuf, data...) return len(data), nil } n, err := c.conn.Write(data) c.bytesSent += int64(n) return n, err } func (c *Conn) flush() (int, error) { if len(c.sendBuf) == 0 { return 0, nil } n, err := c.conn.Write(c.sendBuf) c.bytesSent += int64(n) c.sendBuf = nil c.buffering = false return n, err } // writeRecordLocked writes a TLS record with the given type and payload to the // connection and updates the record layer state. func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) { b := c.out.newBlock() defer c.out.freeBlock(b) var n int for len(data) > 0 { explicitIVLen := 0 explicitIVIsSeq := false var cbc cbcMode if c.out.version >= VersionTLS11 || c.out.version == VersionGMSSL { var ok bool if cbc, ok = c.out.cipher.(cbcMode); ok { explicitIVLen = cbc.BlockSize() } } if explicitIVLen == 0 { if c, ok := c.out.cipher.(aead); ok { explicitIVLen = c.explicitNonceLen() // The AES-GCM construction in TLS has an // explicit nonce so that the nonce can be // random. However, the nonce is only 8 bytes // which is too small for a secure, random // nonce. Therefore we use the sequence number // as the nonce. explicitIVIsSeq = explicitIVLen > 0 } } m := len(data) if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload { m = maxPayload } b.resize(recordHeaderLen + explicitIVLen + m) b.data[0] = byte(typ) vers := c.vers if vers == 0 { // Some TLS servers fail if the record version is // greater than TLS 1.0 for the initial ClientHello. vers = VersionTLS10 } b.data[1] = byte(vers >> 8) b.data[2] = byte(vers) b.data[3] = byte(m >> 8) b.data[4] = byte(m) if explicitIVLen > 0 { explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] if explicitIVIsSeq { copy(explicitIV, c.out.seq[:]) } else { if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil { return n, err } } } copy(b.data[recordHeaderLen+explicitIVLen:], data) c.out.encrypt(b, explicitIVLen) if _, err := c.write(b.data); err != nil { return n, err } n += m data = data[m:] } if typ == recordTypeChangeCipherSpec { if err := c.out.changeCipherSpec(); err != nil { return n, c.sendAlertLocked(err.(alert)) } } return n, nil } // writeRecord writes a TLS record with the given type and payload to the // connection and updates the record layer state. func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) { c.out.Lock() defer c.out.Unlock() return c.writeRecordLocked(typ, data) } // readHandshake reads the next handshake message from // the record layer. func (c *Conn) readHandshake() (interface{}, error) { for c.hand.Len() < 4 { if err := c.in.err; err != nil { return nil, err } if err := c.readRecord(recordTypeHandshake); err != nil { return nil, err } } data := c.hand.Bytes() n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) if n > maxHandshake { c.sendAlertLocked(alertInternalError) return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake)) } for c.hand.Len() < 4+n { if err := c.in.err; err != nil { return nil, err } if err := c.readRecord(recordTypeHandshake); err != nil { return nil, err } } data = c.hand.Next(4 + n) var m handshakeMessage switch data[0] { case typeHelloRequest: m = new(helloRequestMsg) case typeClientHello: m = new(clientHelloMsg) case typeServerHello: m = new(serverHelloMsg) case typeNewSessionTicket: m = new(newSessionTicketMsg) case typeCertificate: m = new(certificateMsg) case typeCertificateRequest: if c.config.GMSupport != nil { m = &certificateRequestMsgGM{} } else { m = &certificateRequestMsg{ hasSignatureAndHash: c.vers >= VersionTLS12, } } case typeCertificateStatus: m = new(certificateStatusMsg) case typeServerKeyExchange: m = new(serverKeyExchangeMsg) case typeServerHelloDone: m = new(serverHelloDoneMsg) case typeClientKeyExchange: m = new(clientKeyExchangeMsg) case typeCertificateVerify: m = &certificateVerifyMsg{ hasSignatureAndHash: c.vers >= VersionTLS12, } case typeNextProtocol: m = new(nextProtoMsg) case typeFinished: m = new(finishedMsg) default: return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } // The handshake message unmarshalers // expect to be able to keep references to data, // so pass in a fresh copy that won't be overwritten. data = append([]byte(nil), data...) if !m.unmarshal(data) { return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } return m, nil } var ( errClosed = errors.New("tls: use of closed connection") errShutdown = errors.New("tls: protocol is shutdown") ) // Write writes data to the connection. func (c *Conn) Write(b []byte) (int, error) { // interlock with Close below for { x := atomic.LoadInt32(&c.activeCall) if x&1 != 0 { return 0, errClosed } if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) { defer atomic.AddInt32(&c.activeCall, -2) break } } if err := c.Handshake(); err != nil { return 0, err } c.out.Lock() defer c.out.Unlock() if err := c.out.err; err != nil { return 0, err } if !c.handshakeComplete() { return 0, alertInternalError } if c.closeNotifySent { return 0, errShutdown } // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext // attack when using block mode ciphers due to predictable IVs. // This can be prevented by splitting each Application Data // record into two records, effectively randomizing the IV. // // https://www.openssl.org/~bodo/tls-cbc.txt // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 // https://www.imperialviolet.org/2012/01/15/beastfollowup.html var m int if len(b) > 1 && c.vers <= VersionTLS10 { if _, ok := c.out.cipher.(cipher.BlockMode); ok { n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1]) if err != nil { return n, c.out.setErrorLocked(err) } m, b = 1, b[1:] } } n, err := c.writeRecordLocked(recordTypeApplicationData, b) return n + m, c.out.setErrorLocked(err) } // handleRenegotiation processes a HelloRequest handshake message. func (c *Conn) handleRenegotiation() error { msg, err := c.readHandshake() if err != nil { return err } _, ok := msg.(*helloRequestMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return alertUnexpectedMessage } if !c.isClient { return c.sendAlert(alertNoRenegotiation) } switch c.config.Renegotiation { case RenegotiateNever: return c.sendAlert(alertNoRenegotiation) case RenegotiateOnceAsClient: if c.handshakes > 1 { return c.sendAlert(alertNoRenegotiation) } case RenegotiateFreelyAsClient: // Ok. default: c.sendAlert(alertInternalError) return errors.New("tls: unknown Renegotiation value") } c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() atomic.StoreUint32(&c.handshakeStatus, 0) if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil { c.handshakes++ } return c.handshakeErr } // Read can be made to time out and return a net.Error with Timeout() == true // after a fixed time limit; see SetDeadline and SetReadDeadline. func (c *Conn) Read(b []byte) (n int, err error) { if err = c.Handshake(); err != nil { return } if len(b) == 0 { // Put this after Handshake, in case people were calling // Read(nil) for the side effect of the Handshake. return } c.in.Lock() defer c.in.Unlock() // Some OpenSSL servers send empty records in order to randomize the // CBC IV. So this loop ignores a limited number of empty records. const maxConsecutiveEmptyRecords = 100 for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ { for c.input == nil && c.in.err == nil { if err := c.readRecord(recordTypeApplicationData); err != nil { // Soft error, like EAGAIN return 0, err } if c.hand.Len() > 0 { // We received handshake bytes, indicating the // start of a renegotiation. if err := c.handleRenegotiation(); err != nil { return 0, err } } } if err := c.in.err; err != nil { return 0, err } n, err = c.input.Read(b) if c.input.off >= len(c.input.data) { c.in.freeBlock(c.input) c.input = nil } // If a close-notify alert is waiting, read it so that // we can return (n, EOF) instead of (n, nil), to signal // to the HTTP response reading goroutine that the // connection is now closed. This eliminates a race // where the HTTP response reading goroutine would // otherwise not observe the EOF until its next read, // by which time a client goroutine might have already // tried to reuse the HTTP connection for a new // request. // See https://codereview.appspot.com/76400046 // and https://golang.org/issue/3514 if ri := c.rawInput; ri != nil && n != 0 && err == nil && c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert { if recErr := c.readRecord(recordTypeApplicationData); recErr != nil { err = recErr // will be io.EOF on closeNotify } } if n != 0 || err != nil { return n, err } } return 0, io.ErrNoProgress } // Close closes the connection. func (c *Conn) Close() error { // Interlock with Conn.Write above. var x int32 for { x = atomic.LoadInt32(&c.activeCall) if x&1 != 0 { return errClosed } if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) { break } } if x != 0 { // io.Writer and io.Closer should not be used concurrently. // If Close is called while a Write is currently in-flight, // interpret that as a sign that this Close is really just // being used to break the Write and/or clean up resources and // avoid sending the alertCloseNotify, which may block // waiting on handshakeMutex or the c.out mutex. return c.conn.Close() } var alertErr error if c.handshakeComplete() { alertErr = c.closeNotify() } if err := c.conn.Close(); err != nil { return err } return alertErr } var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete") // CloseWrite shuts down the writing side of the connection. It should only be // called once the handshake has completed and does not call CloseWrite on the // underlying connection. Most callers should just use Close. func (c *Conn) CloseWrite() error { if !c.handshakeComplete() { return errEarlyCloseWrite } return c.closeNotify() } func (c *Conn) closeNotify() error { c.out.Lock() defer c.out.Unlock() if !c.closeNotifySent { c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify) c.closeNotifySent = true } return c.closeNotifyErr } // Handshake runs the client or server handshake // protocol if it has not yet been run. // Most uses of this package need not call Handshake // explicitly: the first Read or Write will call it automatically. func (c *Conn) Handshake() error { c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() if err := c.handshakeErr; err != nil { return err } if c.handshakeComplete() { return nil } c.in.Lock() defer c.in.Unlock() if c.isClient { c.handshakeErr = c.clientHandshake() } else { if c.config.GMSupport == nil { // TLS Only c.handshakeErr = c.serverHandshake() } else if c.config.GMSupport.IsAutoSwitchMode() { // GMSSL/TLS Auto switch c.handshakeErr = c.serverHandshakeAutoSwitch() } else { // GMSSL Only c.handshakeErr = c.serverHandshakeGM() } } if c.handshakeErr == nil { c.handshakes++ } else { // If an error occurred during the hadshake try to flush the // alert that might be left in the buffer. c.flush() fmt.Println("handshake error :", c.handshakeErr) } if c.handshakeErr == nil && !c.handshakeComplete() { panic("handshake should have had a result.") } return c.handshakeErr } // ConnectionState returns basic TLS details about the connection. func (c *Conn) ConnectionState() ConnectionState { c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() var state ConnectionState state.HandshakeComplete = c.handshakeComplete() state.ServerName = c.serverName if state.HandshakeComplete { state.Version = c.vers state.NegotiatedProtocol = c.clientProtocol state.DidResume = c.didResume state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback state.CipherSuite = c.cipherSuite state.PeerCertificates = c.peerCertificates state.VerifiedChains = c.verifiedChains state.SignedCertificateTimestamps = c.scts state.OCSPResponse = c.ocspResponse if !c.didResume { if c.clientFinishedIsFirst { state.TLSUnique = c.clientFinished[:] } else { state.TLSUnique = c.serverFinished[:] } } if c.config.Renegotiation != RenegotiateNever { state.ekm = noExportedKeyingMaterial } else { state.ekm = c.ekm } } return state } // OCSPResponse returns the stapled OCSP response from the TLS server, if // any. (Only valid for client connections.) func (c *Conn) OCSPResponse() []byte { c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() return c.ocspResponse } // VerifyHostname checks that the peer certificate chain is valid for // connecting to host. If so, it returns nil; if not, it returns an error // describing the problem. func (c *Conn) VerifyHostname(host string) error { c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() if !c.isClient { return errors.New("tls: VerifyHostname called on TLS server connection") } if !c.handshakeComplete() { return errors.New("tls: handshake has not yet been performed") } if len(c.verifiedChains) == 0 { return errors.New("tls: handshake did not verify certificate chain") } return c.peerCertificates[0].VerifyHostname(host) } func (c *Conn) handshakeComplete() bool { return atomic.LoadUint32(&c.handshakeStatus) == 1 }