package moremath import ( "math" ) // https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/syntax/values.html#floating-point const ( // F32CanonicalNaNBits is the 32-bit float where payload's MSB equals 1 and others are all zero. F32CanonicalNaNBits = uint32(0x7fc0_0000) // F32CanonicalNaNBitsMask can be used to judge the value `v` is canonical nan as "v&F32CanonicalNaNBitsMask == F32CanonicalNaNBits" F32CanonicalNaNBitsMask = uint32(0x7fff_ffff) // F64CanonicalNaNBits is the 64-bit float where payload's MSB equals 1 and others are all zero. F64CanonicalNaNBits = uint64(0x7ff8_0000_0000_0000) // F64CanonicalNaNBitsMask can be used to judge the value `v` is canonical nan as "v&F64CanonicalNaNBitsMask == F64CanonicalNaNBits" F64CanonicalNaNBitsMask = uint64(0x7fff_ffff_ffff_ffff) // F32ArithmeticNaNPayloadMSB is used to extract the most significant bit of payload of 32-bit arithmetic NaN values F32ArithmeticNaNPayloadMSB = uint32(0x0040_0000) // F32ExponentMask is used to extract the exponent of 32-bit floating point. F32ExponentMask = uint32(0x7f80_0000) // F32ArithmeticNaNBits is an example 32-bit arithmetic NaN. F32ArithmeticNaNBits = F32CanonicalNaNBits | 0b1 // Set first bit to make this different from the canonical NaN. // F64ArithmeticNaNPayloadMSB is used to extract the most significant bit of payload of 64-bit arithmetic NaN values F64ArithmeticNaNPayloadMSB = uint64(0x0008_0000_0000_0000) // F64ExponentMask is used to extract the exponent of 64-bit floating point. F64ExponentMask = uint64(0x7ff0_0000_0000_0000) // F64ArithmeticNaNBits is an example 64-bit arithmetic NaN. F64ArithmeticNaNBits = F64CanonicalNaNBits | 0b1 // Set first bit to make this different from the canonical NaN. ) // WasmCompatMin64 is the Wasm spec compatible variant of math.Min for 64-bit floating points. func WasmCompatMin64(x, y float64) float64 { switch { case math.IsNaN(x) || math.IsNaN(y): return returnF64NaNBinOp(x, y) case math.IsInf(x, -1) || math.IsInf(y, -1): return math.Inf(-1) case x == 0 && x == y: if math.Signbit(x) { return x } return y } if x < y { return x } return y } // WasmCompatMin32 is the Wasm spec compatible variant of math.Min for 32-bit floating points. func WasmCompatMin32(x, y float32) float32 { x64, y64 := float64(x), float64(y) switch { case math.IsNaN(x64) || math.IsNaN(y64): return returnF32NaNBinOp(x, y) case math.IsInf(x64, -1) || math.IsInf(y64, -1): return float32(math.Inf(-1)) case x == 0 && x == y: if math.Signbit(x64) { return x } return y } if x < y { return x } return y } // WasmCompatMax64 is the Wasm spec compatible variant of math.Max for 64-bit floating points. func WasmCompatMax64(x, y float64) float64 { switch { case math.IsNaN(x) || math.IsNaN(y): return returnF64NaNBinOp(x, y) case math.IsInf(x, 1) || math.IsInf(y, 1): return math.Inf(1) case x == 0 && x == y: if math.Signbit(x) { return y } return x } if x > y { return x } return y } // WasmCompatMax32 is the Wasm spec compatible variant of math.Max for 32-bit floating points. func WasmCompatMax32(x, y float32) float32 { x64, y64 := float64(x), float64(y) switch { case math.IsNaN(x64) || math.IsNaN(y64): return returnF32NaNBinOp(x, y) case math.IsInf(x64, 1) || math.IsInf(y64, 1): return float32(math.Inf(1)) case x == 0 && x == y: if math.Signbit(x64) { return y } return x } if x > y { return x } return y } // WasmCompatNearestF32 is the Wasm spec compatible variant of math.Round, used for Nearest instruction. // For example, this converts 1.9 to 2.0, and this has the semantics of LLVM's rint intrinsic. // // e.g. math.Round(-4.5) results in -5 while this results in -4. // // See https://llvm.org/docs/LangRef.html#llvm-rint-intrinsic. func WasmCompatNearestF32(f float32) float32 { var res float32 // TODO: look at https://github.com/bytecodealliance/wasmtime/pull/2171 and reconsider this algorithm if f != 0 { ceil := float32(math.Ceil(float64(f))) floor := float32(math.Floor(float64(f))) distToCeil := math.Abs(float64(f - ceil)) distToFloor := math.Abs(float64(f - floor)) h := ceil / 2.0 if distToCeil < distToFloor { res = ceil } else if distToCeil == distToFloor && float32(math.Floor(float64(h))) == h { res = ceil } else { res = floor } } else { res = f } return returnF32UniOp(f, res) } // WasmCompatNearestF64 is the Wasm spec compatible variant of math.Round, used for Nearest instruction. // For example, this converts 1.9 to 2.0, and this has the semantics of LLVM's rint intrinsic. // // e.g. math.Round(-4.5) results in -5 while this results in -4. // // See https://llvm.org/docs/LangRef.html#llvm-rint-intrinsic. func WasmCompatNearestF64(f float64) float64 { // TODO: look at https://github.com/bytecodealliance/wasmtime/pull/2171 and reconsider this algorithm var res float64 if f != 0 { ceil := math.Ceil(f) floor := math.Floor(f) distToCeil := math.Abs(f - ceil) distToFloor := math.Abs(f - floor) h := ceil / 2.0 if distToCeil < distToFloor { res = ceil } else if distToCeil == distToFloor && math.Floor(h) == h { res = ceil } else { res = floor } } else { res = f } return returnF64UniOp(f, res) } // WasmCompatCeilF32 is the same as math.Ceil on 32-bit except that // the returned NaN value follows the Wasm specification on NaN // propagation. // https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation func WasmCompatCeilF32(f float32) float32 { return returnF32UniOp(f, float32(math.Ceil(float64(f)))) } // WasmCompatCeilF64 is the same as math.Ceil on 64-bit except that // the returned NaN value follows the Wasm specification on NaN // propagation. // https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation func WasmCompatCeilF64(f float64) float64 { return returnF64UniOp(f, math.Ceil(f)) } // WasmCompatFloorF32 is the same as math.Floor on 32-bit except that // the returned NaN value follows the Wasm specification on NaN // propagation. // https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation func WasmCompatFloorF32(f float32) float32 { return returnF32UniOp(f, float32(math.Floor(float64(f)))) } // WasmCompatFloorF64 is the same as math.Floor on 64-bit except that // the returned NaN value follows the Wasm specification on NaN // propagation. // https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation func WasmCompatFloorF64(f float64) float64 { return returnF64UniOp(f, math.Floor(f)) } // WasmCompatTruncF32 is the same as math.Trunc on 32-bit except that // the returned NaN value follows the Wasm specification on NaN // propagation. // https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation func WasmCompatTruncF32(f float32) float32 { return returnF32UniOp(f, float32(math.Trunc(float64(f)))) } // WasmCompatTruncF64 is the same as math.Trunc on 64-bit except that // the returned NaN value follows the Wasm specification on NaN // propagation. // https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation func WasmCompatTruncF64(f float64) float64 { return returnF64UniOp(f, math.Trunc(f)) } func f32IsNaN(v float32) bool { return v != v // this is how NaN is defined. } func f64IsNaN(v float64) bool { return v != v // this is how NaN is defined. } // returnF32UniOp returns the result of 32-bit unary operation. This accepts `original` which is the operand, // and `result` which is its result. This returns the `result` as-is if the result is not NaN. Otherwise, this follows // the same logic as in the reference interpreter as well as the amd64 and arm64 floating point handling. func returnF32UniOp(original, result float32) float32 { // Following the same logic as in the reference interpreter: // https://github.com/WebAssembly/spec/blob/d48af683f5e6d00c13f775ab07d29a15daf92203/interpreter/exec/fxx.ml#L115-L122 if !f32IsNaN(result) { return result } if !f32IsNaN(original) { return math.Float32frombits(F32CanonicalNaNBits) } return math.Float32frombits(math.Float32bits(original) | F32CanonicalNaNBits) } // returnF32UniOp returns the result of 64-bit unary operation. This accepts `original` which is the operand, // and `result` which is its result. This returns the `result` as-is if the result is not NaN. Otherwise, this follows // the same logic as in the reference interpreter as well as the amd64 and arm64 floating point handling. func returnF64UniOp(original, result float64) float64 { // Following the same logic as in the reference interpreter (== amd64 and arm64's behavior): // https://github.com/WebAssembly/spec/blob/d48af683f5e6d00c13f775ab07d29a15daf92203/interpreter/exec/fxx.ml#L115-L122 if !f64IsNaN(result) { return result } if !f64IsNaN(original) { return math.Float64frombits(F64CanonicalNaNBits) } return math.Float64frombits(math.Float64bits(original) | F64CanonicalNaNBits) } // returnF64NaNBinOp returns a NaN for 64-bit binary operations. `x` and `y` are original floats // and at least one of them is NaN. The returned NaN is guaranteed to comply with the NaN propagation // procedure: https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation func returnF64NaNBinOp(x, y float64) float64 { if f64IsNaN(x) { return math.Float64frombits(math.Float64bits(x) | F64CanonicalNaNBits) } else { return math.Float64frombits(math.Float64bits(y) | F64CanonicalNaNBits) } } // returnF64NaNBinOp returns a NaN for 32-bit binary operations. `x` and `y` are original floats // and at least one of them is NaN. The returned NaN is guaranteed to comply with the NaN propagation // procedure: https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/exec/numerics.html#nan-propagation func returnF32NaNBinOp(x, y float32) float32 { if f32IsNaN(x) { return math.Float32frombits(math.Float32bits(x) | F32CanonicalNaNBits) } else { return math.Float32frombits(math.Float32bits(y) | F32CanonicalNaNBits) } }