...

Source file src/github.com/mitchellh/mapstructure/mapstructure.go

Documentation: github.com/mitchellh/mapstructure

     1  // Package mapstructure exposes functionality to convert one arbitrary
     2  // Go type into another, typically to convert a map[string]interface{}
     3  // into a native Go structure.
     4  //
     5  // The Go structure can be arbitrarily complex, containing slices,
     6  // other structs, etc. and the decoder will properly decode nested
     7  // maps and so on into the proper structures in the native Go struct.
     8  // See the examples to see what the decoder is capable of.
     9  //
    10  // The simplest function to start with is Decode.
    11  //
    12  // Field Tags
    13  //
    14  // When decoding to a struct, mapstructure will use the field name by
    15  // default to perform the mapping. For example, if a struct has a field
    16  // "Username" then mapstructure will look for a key in the source value
    17  // of "username" (case insensitive).
    18  //
    19  //     type User struct {
    20  //         Username string
    21  //     }
    22  //
    23  // You can change the behavior of mapstructure by using struct tags.
    24  // The default struct tag that mapstructure looks for is "mapstructure"
    25  // but you can customize it using DecoderConfig.
    26  //
    27  // Renaming Fields
    28  //
    29  // To rename the key that mapstructure looks for, use the "mapstructure"
    30  // tag and set a value directly. For example, to change the "username" example
    31  // above to "user":
    32  //
    33  //     type User struct {
    34  //         Username string `mapstructure:"user"`
    35  //     }
    36  //
    37  // Embedded Structs and Squashing
    38  //
    39  // Embedded structs are treated as if they're another field with that name.
    40  // By default, the two structs below are equivalent when decoding with
    41  // mapstructure:
    42  //
    43  //     type Person struct {
    44  //         Name string
    45  //     }
    46  //
    47  //     type Friend struct {
    48  //         Person
    49  //     }
    50  //
    51  //     type Friend struct {
    52  //         Person Person
    53  //     }
    54  //
    55  // This would require an input that looks like below:
    56  //
    57  //     map[string]interface{}{
    58  //         "person": map[string]interface{}{"name": "alice"},
    59  //     }
    60  //
    61  // If your "person" value is NOT nested, then you can append ",squash" to
    62  // your tag value and mapstructure will treat it as if the embedded struct
    63  // were part of the struct directly. Example:
    64  //
    65  //     type Friend struct {
    66  //         Person `mapstructure:",squash"`
    67  //     }
    68  //
    69  // Now the following input would be accepted:
    70  //
    71  //     map[string]interface{}{
    72  //         "name": "alice",
    73  //     }
    74  //
    75  // When decoding from a struct to a map, the squash tag squashes the struct
    76  // fields into a single map. Using the example structs from above:
    77  //
    78  //     Friend{Person: Person{Name: "alice"}}
    79  //
    80  // Will be decoded into a map:
    81  //
    82  //     map[string]interface{}{
    83  //         "name": "alice",
    84  //     }
    85  //
    86  // DecoderConfig has a field that changes the behavior of mapstructure
    87  // to always squash embedded structs.
    88  //
    89  // Remainder Values
    90  //
    91  // If there are any unmapped keys in the source value, mapstructure by
    92  // default will silently ignore them. You can error by setting ErrorUnused
    93  // in DecoderConfig. If you're using Metadata you can also maintain a slice
    94  // of the unused keys.
    95  //
    96  // You can also use the ",remain" suffix on your tag to collect all unused
    97  // values in a map. The field with this tag MUST be a map type and should
    98  // probably be a "map[string]interface{}" or "map[interface{}]interface{}".
    99  // See example below:
   100  //
   101  //     type Friend struct {
   102  //         Name  string
   103  //         Other map[string]interface{} `mapstructure:",remain"`
   104  //     }
   105  //
   106  // Given the input below, Other would be populated with the other
   107  // values that weren't used (everything but "name"):
   108  //
   109  //     map[string]interface{}{
   110  //         "name":    "bob",
   111  //         "address": "123 Maple St.",
   112  //     }
   113  //
   114  // Omit Empty Values
   115  //
   116  // When decoding from a struct to any other value, you may use the
   117  // ",omitempty" suffix on your tag to omit that value if it equates to
   118  // the zero value. The zero value of all types is specified in the Go
   119  // specification.
   120  //
   121  // For example, the zero type of a numeric type is zero ("0"). If the struct
   122  // field value is zero and a numeric type, the field is empty, and it won't
   123  // be encoded into the destination type.
   124  //
   125  //     type Source struct {
   126  //         Age int `mapstructure:",omitempty"`
   127  //     }
   128  //
   129  // Unexported fields
   130  //
   131  // Since unexported (private) struct fields cannot be set outside the package
   132  // where they are defined, the decoder will simply skip them.
   133  //
   134  // For this output type definition:
   135  //
   136  //     type Exported struct {
   137  //         private string // this unexported field will be skipped
   138  //         Public string
   139  //     }
   140  //
   141  // Using this map as input:
   142  //
   143  //     map[string]interface{}{
   144  //         "private": "I will be ignored",
   145  //         "Public":  "I made it through!",
   146  //     }
   147  //
   148  // The following struct will be decoded:
   149  //
   150  //     type Exported struct {
   151  //         private: "" // field is left with an empty string (zero value)
   152  //         Public: "I made it through!"
   153  //     }
   154  //
   155  // Other Configuration
   156  //
   157  // mapstructure is highly configurable. See the DecoderConfig struct
   158  // for other features and options that are supported.
   159  package mapstructure
   160  
   161  import (
   162  	"encoding/json"
   163  	"errors"
   164  	"fmt"
   165  	"reflect"
   166  	"sort"
   167  	"strconv"
   168  	"strings"
   169  )
   170  
   171  // DecodeHookFunc is the callback function that can be used for
   172  // data transformations. See "DecodeHook" in the DecoderConfig
   173  // struct.
   174  //
   175  // The type must be one of DecodeHookFuncType, DecodeHookFuncKind, or
   176  // DecodeHookFuncValue.
   177  // Values are a superset of Types (Values can return types), and Types are a
   178  // superset of Kinds (Types can return Kinds) and are generally a richer thing
   179  // to use, but Kinds are simpler if you only need those.
   180  //
   181  // The reason DecodeHookFunc is multi-typed is for backwards compatibility:
   182  // we started with Kinds and then realized Types were the better solution,
   183  // but have a promise to not break backwards compat so we now support
   184  // both.
   185  type DecodeHookFunc interface{}
   186  
   187  // DecodeHookFuncType is a DecodeHookFunc which has complete information about
   188  // the source and target types.
   189  type DecodeHookFuncType func(reflect.Type, reflect.Type, interface{}) (interface{}, error)
   190  
   191  // DecodeHookFuncKind is a DecodeHookFunc which knows only the Kinds of the
   192  // source and target types.
   193  type DecodeHookFuncKind func(reflect.Kind, reflect.Kind, interface{}) (interface{}, error)
   194  
   195  // DecodeHookFuncValue is a DecodeHookFunc which has complete access to both the source and target
   196  // values.
   197  type DecodeHookFuncValue func(from reflect.Value, to reflect.Value) (interface{}, error)
   198  
   199  // DecoderConfig is the configuration that is used to create a new decoder
   200  // and allows customization of various aspects of decoding.
   201  type DecoderConfig struct {
   202  	// DecodeHook, if set, will be called before any decoding and any
   203  	// type conversion (if WeaklyTypedInput is on). This lets you modify
   204  	// the values before they're set down onto the resulting struct. The
   205  	// DecodeHook is called for every map and value in the input. This means
   206  	// that if a struct has embedded fields with squash tags the decode hook
   207  	// is called only once with all of the input data, not once for each
   208  	// embedded struct.
   209  	//
   210  	// If an error is returned, the entire decode will fail with that error.
   211  	DecodeHook DecodeHookFunc
   212  
   213  	// If ErrorUnused is true, then it is an error for there to exist
   214  	// keys in the original map that were unused in the decoding process
   215  	// (extra keys).
   216  	ErrorUnused bool
   217  
   218  	// If ErrorUnset is true, then it is an error for there to exist
   219  	// fields in the result that were not set in the decoding process
   220  	// (extra fields). This only applies to decoding to a struct. This
   221  	// will affect all nested structs as well.
   222  	ErrorUnset bool
   223  
   224  	// ZeroFields, if set to true, will zero fields before writing them.
   225  	// For example, a map will be emptied before decoded values are put in
   226  	// it. If this is false, a map will be merged.
   227  	ZeroFields bool
   228  
   229  	// If WeaklyTypedInput is true, the decoder will make the following
   230  	// "weak" conversions:
   231  	//
   232  	//   - bools to string (true = "1", false = "0")
   233  	//   - numbers to string (base 10)
   234  	//   - bools to int/uint (true = 1, false = 0)
   235  	//   - strings to int/uint (base implied by prefix)
   236  	//   - int to bool (true if value != 0)
   237  	//   - string to bool (accepts: 1, t, T, TRUE, true, True, 0, f, F,
   238  	//     FALSE, false, False. Anything else is an error)
   239  	//   - empty array = empty map and vice versa
   240  	//   - negative numbers to overflowed uint values (base 10)
   241  	//   - slice of maps to a merged map
   242  	//   - single values are converted to slices if required. Each
   243  	//     element is weakly decoded. For example: "4" can become []int{4}
   244  	//     if the target type is an int slice.
   245  	//
   246  	WeaklyTypedInput bool
   247  
   248  	// Squash will squash embedded structs.  A squash tag may also be
   249  	// added to an individual struct field using a tag.  For example:
   250  	//
   251  	//  type Parent struct {
   252  	//      Child `mapstructure:",squash"`
   253  	//  }
   254  	Squash bool
   255  
   256  	// Metadata is the struct that will contain extra metadata about
   257  	// the decoding. If this is nil, then no metadata will be tracked.
   258  	Metadata *Metadata
   259  
   260  	// Result is a pointer to the struct that will contain the decoded
   261  	// value.
   262  	Result interface{}
   263  
   264  	// The tag name that mapstructure reads for field names. This
   265  	// defaults to "mapstructure"
   266  	TagName string
   267  
   268  	// IgnoreUntaggedFields ignores all struct fields without explicit
   269  	// TagName, comparable to `mapstructure:"-"` as default behaviour.
   270  	IgnoreUntaggedFields bool
   271  
   272  	// MatchName is the function used to match the map key to the struct
   273  	// field name or tag. Defaults to `strings.EqualFold`. This can be used
   274  	// to implement case-sensitive tag values, support snake casing, etc.
   275  	MatchName func(mapKey, fieldName string) bool
   276  }
   277  
   278  // A Decoder takes a raw interface value and turns it into structured
   279  // data, keeping track of rich error information along the way in case
   280  // anything goes wrong. Unlike the basic top-level Decode method, you can
   281  // more finely control how the Decoder behaves using the DecoderConfig
   282  // structure. The top-level Decode method is just a convenience that sets
   283  // up the most basic Decoder.
   284  type Decoder struct {
   285  	config *DecoderConfig
   286  }
   287  
   288  // Metadata contains information about decoding a structure that
   289  // is tedious or difficult to get otherwise.
   290  type Metadata struct {
   291  	// Keys are the keys of the structure which were successfully decoded
   292  	Keys []string
   293  
   294  	// Unused is a slice of keys that were found in the raw value but
   295  	// weren't decoded since there was no matching field in the result interface
   296  	Unused []string
   297  
   298  	// Unset is a slice of field names that were found in the result interface
   299  	// but weren't set in the decoding process since there was no matching value
   300  	// in the input
   301  	Unset []string
   302  }
   303  
   304  // Decode takes an input structure and uses reflection to translate it to
   305  // the output structure. output must be a pointer to a map or struct.
   306  func Decode(input interface{}, output interface{}) error {
   307  	config := &DecoderConfig{
   308  		Metadata: nil,
   309  		Result:   output,
   310  	}
   311  
   312  	decoder, err := NewDecoder(config)
   313  	if err != nil {
   314  		return err
   315  	}
   316  
   317  	return decoder.Decode(input)
   318  }
   319  
   320  // WeakDecode is the same as Decode but is shorthand to enable
   321  // WeaklyTypedInput. See DecoderConfig for more info.
   322  func WeakDecode(input, output interface{}) error {
   323  	config := &DecoderConfig{
   324  		Metadata:         nil,
   325  		Result:           output,
   326  		WeaklyTypedInput: true,
   327  	}
   328  
   329  	decoder, err := NewDecoder(config)
   330  	if err != nil {
   331  		return err
   332  	}
   333  
   334  	return decoder.Decode(input)
   335  }
   336  
   337  // DecodeMetadata is the same as Decode, but is shorthand to
   338  // enable metadata collection. See DecoderConfig for more info.
   339  func DecodeMetadata(input interface{}, output interface{}, metadata *Metadata) error {
   340  	config := &DecoderConfig{
   341  		Metadata: metadata,
   342  		Result:   output,
   343  	}
   344  
   345  	decoder, err := NewDecoder(config)
   346  	if err != nil {
   347  		return err
   348  	}
   349  
   350  	return decoder.Decode(input)
   351  }
   352  
   353  // WeakDecodeMetadata is the same as Decode, but is shorthand to
   354  // enable both WeaklyTypedInput and metadata collection. See
   355  // DecoderConfig for more info.
   356  func WeakDecodeMetadata(input interface{}, output interface{}, metadata *Metadata) error {
   357  	config := &DecoderConfig{
   358  		Metadata:         metadata,
   359  		Result:           output,
   360  		WeaklyTypedInput: true,
   361  	}
   362  
   363  	decoder, err := NewDecoder(config)
   364  	if err != nil {
   365  		return err
   366  	}
   367  
   368  	return decoder.Decode(input)
   369  }
   370  
   371  // NewDecoder returns a new decoder for the given configuration. Once
   372  // a decoder has been returned, the same configuration must not be used
   373  // again.
   374  func NewDecoder(config *DecoderConfig) (*Decoder, error) {
   375  	val := reflect.ValueOf(config.Result)
   376  	if val.Kind() != reflect.Ptr {
   377  		return nil, errors.New("result must be a pointer")
   378  	}
   379  
   380  	val = val.Elem()
   381  	if !val.CanAddr() {
   382  		return nil, errors.New("result must be addressable (a pointer)")
   383  	}
   384  
   385  	if config.Metadata != nil {
   386  		if config.Metadata.Keys == nil {
   387  			config.Metadata.Keys = make([]string, 0)
   388  		}
   389  
   390  		if config.Metadata.Unused == nil {
   391  			config.Metadata.Unused = make([]string, 0)
   392  		}
   393  
   394  		if config.Metadata.Unset == nil {
   395  			config.Metadata.Unset = make([]string, 0)
   396  		}
   397  	}
   398  
   399  	if config.TagName == "" {
   400  		config.TagName = "mapstructure"
   401  	}
   402  
   403  	if config.MatchName == nil {
   404  		config.MatchName = strings.EqualFold
   405  	}
   406  
   407  	result := &Decoder{
   408  		config: config,
   409  	}
   410  
   411  	return result, nil
   412  }
   413  
   414  // Decode decodes the given raw interface to the target pointer specified
   415  // by the configuration.
   416  func (d *Decoder) Decode(input interface{}) error {
   417  	return d.decode("", input, reflect.ValueOf(d.config.Result).Elem())
   418  }
   419  
   420  // Decodes an unknown data type into a specific reflection value.
   421  func (d *Decoder) decode(name string, input interface{}, outVal reflect.Value) error {
   422  	var inputVal reflect.Value
   423  	if input != nil {
   424  		inputVal = reflect.ValueOf(input)
   425  
   426  		// We need to check here if input is a typed nil. Typed nils won't
   427  		// match the "input == nil" below so we check that here.
   428  		if inputVal.Kind() == reflect.Ptr && inputVal.IsNil() {
   429  			input = nil
   430  		}
   431  	}
   432  
   433  	if input == nil {
   434  		// If the data is nil, then we don't set anything, unless ZeroFields is set
   435  		// to true.
   436  		if d.config.ZeroFields {
   437  			outVal.Set(reflect.Zero(outVal.Type()))
   438  
   439  			if d.config.Metadata != nil && name != "" {
   440  				d.config.Metadata.Keys = append(d.config.Metadata.Keys, name)
   441  			}
   442  		}
   443  		return nil
   444  	}
   445  
   446  	if !inputVal.IsValid() {
   447  		// If the input value is invalid, then we just set the value
   448  		// to be the zero value.
   449  		outVal.Set(reflect.Zero(outVal.Type()))
   450  		if d.config.Metadata != nil && name != "" {
   451  			d.config.Metadata.Keys = append(d.config.Metadata.Keys, name)
   452  		}
   453  		return nil
   454  	}
   455  
   456  	if d.config.DecodeHook != nil {
   457  		// We have a DecodeHook, so let's pre-process the input.
   458  		var err error
   459  		input, err = DecodeHookExec(d.config.DecodeHook, inputVal, outVal)
   460  		if err != nil {
   461  			return fmt.Errorf("error decoding '%s': %s", name, err)
   462  		}
   463  	}
   464  
   465  	var err error
   466  	outputKind := getKind(outVal)
   467  	addMetaKey := true
   468  	switch outputKind {
   469  	case reflect.Bool:
   470  		err = d.decodeBool(name, input, outVal)
   471  	case reflect.Interface:
   472  		err = d.decodeBasic(name, input, outVal)
   473  	case reflect.String:
   474  		err = d.decodeString(name, input, outVal)
   475  	case reflect.Int:
   476  		err = d.decodeInt(name, input, outVal)
   477  	case reflect.Uint:
   478  		err = d.decodeUint(name, input, outVal)
   479  	case reflect.Float32:
   480  		err = d.decodeFloat(name, input, outVal)
   481  	case reflect.Struct:
   482  		err = d.decodeStruct(name, input, outVal)
   483  	case reflect.Map:
   484  		err = d.decodeMap(name, input, outVal)
   485  	case reflect.Ptr:
   486  		addMetaKey, err = d.decodePtr(name, input, outVal)
   487  	case reflect.Slice:
   488  		err = d.decodeSlice(name, input, outVal)
   489  	case reflect.Array:
   490  		err = d.decodeArray(name, input, outVal)
   491  	case reflect.Func:
   492  		err = d.decodeFunc(name, input, outVal)
   493  	default:
   494  		// If we reached this point then we weren't able to decode it
   495  		return fmt.Errorf("%s: unsupported type: %s", name, outputKind)
   496  	}
   497  
   498  	// If we reached here, then we successfully decoded SOMETHING, so
   499  	// mark the key as used if we're tracking metainput.
   500  	if addMetaKey && d.config.Metadata != nil && name != "" {
   501  		d.config.Metadata.Keys = append(d.config.Metadata.Keys, name)
   502  	}
   503  
   504  	return err
   505  }
   506  
   507  // This decodes a basic type (bool, int, string, etc.) and sets the
   508  // value to "data" of that type.
   509  func (d *Decoder) decodeBasic(name string, data interface{}, val reflect.Value) error {
   510  	if val.IsValid() && val.Elem().IsValid() {
   511  		elem := val.Elem()
   512  
   513  		// If we can't address this element, then its not writable. Instead,
   514  		// we make a copy of the value (which is a pointer and therefore
   515  		// writable), decode into that, and replace the whole value.
   516  		copied := false
   517  		if !elem.CanAddr() {
   518  			copied = true
   519  
   520  			// Make *T
   521  			copy := reflect.New(elem.Type())
   522  
   523  			// *T = elem
   524  			copy.Elem().Set(elem)
   525  
   526  			// Set elem so we decode into it
   527  			elem = copy
   528  		}
   529  
   530  		// Decode. If we have an error then return. We also return right
   531  		// away if we're not a copy because that means we decoded directly.
   532  		if err := d.decode(name, data, elem); err != nil || !copied {
   533  			return err
   534  		}
   535  
   536  		// If we're a copy, we need to set te final result
   537  		val.Set(elem.Elem())
   538  		return nil
   539  	}
   540  
   541  	dataVal := reflect.ValueOf(data)
   542  
   543  	// If the input data is a pointer, and the assigned type is the dereference
   544  	// of that exact pointer, then indirect it so that we can assign it.
   545  	// Example: *string to string
   546  	if dataVal.Kind() == reflect.Ptr && dataVal.Type().Elem() == val.Type() {
   547  		dataVal = reflect.Indirect(dataVal)
   548  	}
   549  
   550  	if !dataVal.IsValid() {
   551  		dataVal = reflect.Zero(val.Type())
   552  	}
   553  
   554  	dataValType := dataVal.Type()
   555  	if !dataValType.AssignableTo(val.Type()) {
   556  		return fmt.Errorf(
   557  			"'%s' expected type '%s', got '%s'",
   558  			name, val.Type(), dataValType)
   559  	}
   560  
   561  	val.Set(dataVal)
   562  	return nil
   563  }
   564  
   565  func (d *Decoder) decodeString(name string, data interface{}, val reflect.Value) error {
   566  	dataVal := reflect.Indirect(reflect.ValueOf(data))
   567  	dataKind := getKind(dataVal)
   568  
   569  	converted := true
   570  	switch {
   571  	case dataKind == reflect.String:
   572  		val.SetString(dataVal.String())
   573  	case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
   574  		if dataVal.Bool() {
   575  			val.SetString("1")
   576  		} else {
   577  			val.SetString("0")
   578  		}
   579  	case dataKind == reflect.Int && d.config.WeaklyTypedInput:
   580  		val.SetString(strconv.FormatInt(dataVal.Int(), 10))
   581  	case dataKind == reflect.Uint && d.config.WeaklyTypedInput:
   582  		val.SetString(strconv.FormatUint(dataVal.Uint(), 10))
   583  	case dataKind == reflect.Float32 && d.config.WeaklyTypedInput:
   584  		val.SetString(strconv.FormatFloat(dataVal.Float(), 'f', -1, 64))
   585  	case dataKind == reflect.Slice && d.config.WeaklyTypedInput,
   586  		dataKind == reflect.Array && d.config.WeaklyTypedInput:
   587  		dataType := dataVal.Type()
   588  		elemKind := dataType.Elem().Kind()
   589  		switch elemKind {
   590  		case reflect.Uint8:
   591  			var uints []uint8
   592  			if dataKind == reflect.Array {
   593  				uints = make([]uint8, dataVal.Len(), dataVal.Len())
   594  				for i := range uints {
   595  					uints[i] = dataVal.Index(i).Interface().(uint8)
   596  				}
   597  			} else {
   598  				uints = dataVal.Interface().([]uint8)
   599  			}
   600  			val.SetString(string(uints))
   601  		default:
   602  			converted = false
   603  		}
   604  	default:
   605  		converted = false
   606  	}
   607  
   608  	if !converted {
   609  		return fmt.Errorf(
   610  			"'%s' expected type '%s', got unconvertible type '%s', value: '%v'",
   611  			name, val.Type(), dataVal.Type(), data)
   612  	}
   613  
   614  	return nil
   615  }
   616  
   617  func (d *Decoder) decodeInt(name string, data interface{}, val reflect.Value) error {
   618  	dataVal := reflect.Indirect(reflect.ValueOf(data))
   619  	dataKind := getKind(dataVal)
   620  	dataType := dataVal.Type()
   621  
   622  	switch {
   623  	case dataKind == reflect.Int:
   624  		val.SetInt(dataVal.Int())
   625  	case dataKind == reflect.Uint:
   626  		val.SetInt(int64(dataVal.Uint()))
   627  	case dataKind == reflect.Float32:
   628  		val.SetInt(int64(dataVal.Float()))
   629  	case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
   630  		if dataVal.Bool() {
   631  			val.SetInt(1)
   632  		} else {
   633  			val.SetInt(0)
   634  		}
   635  	case dataKind == reflect.String && d.config.WeaklyTypedInput:
   636  		str := dataVal.String()
   637  		if str == "" {
   638  			str = "0"
   639  		}
   640  
   641  		i, err := strconv.ParseInt(str, 0, val.Type().Bits())
   642  		if err == nil {
   643  			val.SetInt(i)
   644  		} else {
   645  			return fmt.Errorf("cannot parse '%s' as int: %s", name, err)
   646  		}
   647  	case dataType.PkgPath() == "encoding/json" && dataType.Name() == "Number":
   648  		jn := data.(json.Number)
   649  		i, err := jn.Int64()
   650  		if err != nil {
   651  			return fmt.Errorf(
   652  				"error decoding json.Number into %s: %s", name, err)
   653  		}
   654  		val.SetInt(i)
   655  	default:
   656  		return fmt.Errorf(
   657  			"'%s' expected type '%s', got unconvertible type '%s', value: '%v'",
   658  			name, val.Type(), dataVal.Type(), data)
   659  	}
   660  
   661  	return nil
   662  }
   663  
   664  func (d *Decoder) decodeUint(name string, data interface{}, val reflect.Value) error {
   665  	dataVal := reflect.Indirect(reflect.ValueOf(data))
   666  	dataKind := getKind(dataVal)
   667  	dataType := dataVal.Type()
   668  
   669  	switch {
   670  	case dataKind == reflect.Int:
   671  		i := dataVal.Int()
   672  		if i < 0 && !d.config.WeaklyTypedInput {
   673  			return fmt.Errorf("cannot parse '%s', %d overflows uint",
   674  				name, i)
   675  		}
   676  		val.SetUint(uint64(i))
   677  	case dataKind == reflect.Uint:
   678  		val.SetUint(dataVal.Uint())
   679  	case dataKind == reflect.Float32:
   680  		f := dataVal.Float()
   681  		if f < 0 && !d.config.WeaklyTypedInput {
   682  			return fmt.Errorf("cannot parse '%s', %f overflows uint",
   683  				name, f)
   684  		}
   685  		val.SetUint(uint64(f))
   686  	case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
   687  		if dataVal.Bool() {
   688  			val.SetUint(1)
   689  		} else {
   690  			val.SetUint(0)
   691  		}
   692  	case dataKind == reflect.String && d.config.WeaklyTypedInput:
   693  		str := dataVal.String()
   694  		if str == "" {
   695  			str = "0"
   696  		}
   697  
   698  		i, err := strconv.ParseUint(str, 0, val.Type().Bits())
   699  		if err == nil {
   700  			val.SetUint(i)
   701  		} else {
   702  			return fmt.Errorf("cannot parse '%s' as uint: %s", name, err)
   703  		}
   704  	case dataType.PkgPath() == "encoding/json" && dataType.Name() == "Number":
   705  		jn := data.(json.Number)
   706  		i, err := strconv.ParseUint(string(jn), 0, 64)
   707  		if err != nil {
   708  			return fmt.Errorf(
   709  				"error decoding json.Number into %s: %s", name, err)
   710  		}
   711  		val.SetUint(i)
   712  	default:
   713  		return fmt.Errorf(
   714  			"'%s' expected type '%s', got unconvertible type '%s', value: '%v'",
   715  			name, val.Type(), dataVal.Type(), data)
   716  	}
   717  
   718  	return nil
   719  }
   720  
   721  func (d *Decoder) decodeBool(name string, data interface{}, val reflect.Value) error {
   722  	dataVal := reflect.Indirect(reflect.ValueOf(data))
   723  	dataKind := getKind(dataVal)
   724  
   725  	switch {
   726  	case dataKind == reflect.Bool:
   727  		val.SetBool(dataVal.Bool())
   728  	case dataKind == reflect.Int && d.config.WeaklyTypedInput:
   729  		val.SetBool(dataVal.Int() != 0)
   730  	case dataKind == reflect.Uint && d.config.WeaklyTypedInput:
   731  		val.SetBool(dataVal.Uint() != 0)
   732  	case dataKind == reflect.Float32 && d.config.WeaklyTypedInput:
   733  		val.SetBool(dataVal.Float() != 0)
   734  	case dataKind == reflect.String && d.config.WeaklyTypedInput:
   735  		b, err := strconv.ParseBool(dataVal.String())
   736  		if err == nil {
   737  			val.SetBool(b)
   738  		} else if dataVal.String() == "" {
   739  			val.SetBool(false)
   740  		} else {
   741  			return fmt.Errorf("cannot parse '%s' as bool: %s", name, err)
   742  		}
   743  	default:
   744  		return fmt.Errorf(
   745  			"'%s' expected type '%s', got unconvertible type '%s', value: '%v'",
   746  			name, val.Type(), dataVal.Type(), data)
   747  	}
   748  
   749  	return nil
   750  }
   751  
   752  func (d *Decoder) decodeFloat(name string, data interface{}, val reflect.Value) error {
   753  	dataVal := reflect.Indirect(reflect.ValueOf(data))
   754  	dataKind := getKind(dataVal)
   755  	dataType := dataVal.Type()
   756  
   757  	switch {
   758  	case dataKind == reflect.Int:
   759  		val.SetFloat(float64(dataVal.Int()))
   760  	case dataKind == reflect.Uint:
   761  		val.SetFloat(float64(dataVal.Uint()))
   762  	case dataKind == reflect.Float32:
   763  		val.SetFloat(dataVal.Float())
   764  	case dataKind == reflect.Bool && d.config.WeaklyTypedInput:
   765  		if dataVal.Bool() {
   766  			val.SetFloat(1)
   767  		} else {
   768  			val.SetFloat(0)
   769  		}
   770  	case dataKind == reflect.String && d.config.WeaklyTypedInput:
   771  		str := dataVal.String()
   772  		if str == "" {
   773  			str = "0"
   774  		}
   775  
   776  		f, err := strconv.ParseFloat(str, val.Type().Bits())
   777  		if err == nil {
   778  			val.SetFloat(f)
   779  		} else {
   780  			return fmt.Errorf("cannot parse '%s' as float: %s", name, err)
   781  		}
   782  	case dataType.PkgPath() == "encoding/json" && dataType.Name() == "Number":
   783  		jn := data.(json.Number)
   784  		i, err := jn.Float64()
   785  		if err != nil {
   786  			return fmt.Errorf(
   787  				"error decoding json.Number into %s: %s", name, err)
   788  		}
   789  		val.SetFloat(i)
   790  	default:
   791  		return fmt.Errorf(
   792  			"'%s' expected type '%s', got unconvertible type '%s', value: '%v'",
   793  			name, val.Type(), dataVal.Type(), data)
   794  	}
   795  
   796  	return nil
   797  }
   798  
   799  func (d *Decoder) decodeMap(name string, data interface{}, val reflect.Value) error {
   800  	valType := val.Type()
   801  	valKeyType := valType.Key()
   802  	valElemType := valType.Elem()
   803  
   804  	// By default we overwrite keys in the current map
   805  	valMap := val
   806  
   807  	// If the map is nil or we're purposely zeroing fields, make a new map
   808  	if valMap.IsNil() || d.config.ZeroFields {
   809  		// Make a new map to hold our result
   810  		mapType := reflect.MapOf(valKeyType, valElemType)
   811  		valMap = reflect.MakeMap(mapType)
   812  	}
   813  
   814  	// Check input type and based on the input type jump to the proper func
   815  	dataVal := reflect.Indirect(reflect.ValueOf(data))
   816  	switch dataVal.Kind() {
   817  	case reflect.Map:
   818  		return d.decodeMapFromMap(name, dataVal, val, valMap)
   819  
   820  	case reflect.Struct:
   821  		return d.decodeMapFromStruct(name, dataVal, val, valMap)
   822  
   823  	case reflect.Array, reflect.Slice:
   824  		if d.config.WeaklyTypedInput {
   825  			return d.decodeMapFromSlice(name, dataVal, val, valMap)
   826  		}
   827  
   828  		fallthrough
   829  
   830  	default:
   831  		return fmt.Errorf("'%s' expected a map, got '%s'", name, dataVal.Kind())
   832  	}
   833  }
   834  
   835  func (d *Decoder) decodeMapFromSlice(name string, dataVal reflect.Value, val reflect.Value, valMap reflect.Value) error {
   836  	// Special case for BC reasons (covered by tests)
   837  	if dataVal.Len() == 0 {
   838  		val.Set(valMap)
   839  		return nil
   840  	}
   841  
   842  	for i := 0; i < dataVal.Len(); i++ {
   843  		err := d.decode(
   844  			name+"["+strconv.Itoa(i)+"]",
   845  			dataVal.Index(i).Interface(), val)
   846  		if err != nil {
   847  			return err
   848  		}
   849  	}
   850  
   851  	return nil
   852  }
   853  
   854  func (d *Decoder) decodeMapFromMap(name string, dataVal reflect.Value, val reflect.Value, valMap reflect.Value) error {
   855  	valType := val.Type()
   856  	valKeyType := valType.Key()
   857  	valElemType := valType.Elem()
   858  
   859  	// Accumulate errors
   860  	errors := make([]string, 0)
   861  
   862  	// If the input data is empty, then we just match what the input data is.
   863  	if dataVal.Len() == 0 {
   864  		if dataVal.IsNil() {
   865  			if !val.IsNil() {
   866  				val.Set(dataVal)
   867  			}
   868  		} else {
   869  			// Set to empty allocated value
   870  			val.Set(valMap)
   871  		}
   872  
   873  		return nil
   874  	}
   875  
   876  	for _, k := range dataVal.MapKeys() {
   877  		fieldName := name + "[" + k.String() + "]"
   878  
   879  		// First decode the key into the proper type
   880  		currentKey := reflect.Indirect(reflect.New(valKeyType))
   881  		if err := d.decode(fieldName, k.Interface(), currentKey); err != nil {
   882  			errors = appendErrors(errors, err)
   883  			continue
   884  		}
   885  
   886  		// Next decode the data into the proper type
   887  		v := dataVal.MapIndex(k).Interface()
   888  		currentVal := reflect.Indirect(reflect.New(valElemType))
   889  		if err := d.decode(fieldName, v, currentVal); err != nil {
   890  			errors = appendErrors(errors, err)
   891  			continue
   892  		}
   893  
   894  		valMap.SetMapIndex(currentKey, currentVal)
   895  	}
   896  
   897  	// Set the built up map to the value
   898  	val.Set(valMap)
   899  
   900  	// If we had errors, return those
   901  	if len(errors) > 0 {
   902  		return &Error{errors}
   903  	}
   904  
   905  	return nil
   906  }
   907  
   908  func (d *Decoder) decodeMapFromStruct(name string, dataVal reflect.Value, val reflect.Value, valMap reflect.Value) error {
   909  	typ := dataVal.Type()
   910  	for i := 0; i < typ.NumField(); i++ {
   911  		// Get the StructField first since this is a cheap operation. If the
   912  		// field is unexported, then ignore it.
   913  		f := typ.Field(i)
   914  		if f.PkgPath != "" {
   915  			continue
   916  		}
   917  
   918  		// Next get the actual value of this field and verify it is assignable
   919  		// to the map value.
   920  		v := dataVal.Field(i)
   921  		if !v.Type().AssignableTo(valMap.Type().Elem()) {
   922  			return fmt.Errorf("cannot assign type '%s' to map value field of type '%s'", v.Type(), valMap.Type().Elem())
   923  		}
   924  
   925  		tagValue := f.Tag.Get(d.config.TagName)
   926  		keyName := f.Name
   927  
   928  		if tagValue == "" && d.config.IgnoreUntaggedFields {
   929  			continue
   930  		}
   931  
   932  		// If Squash is set in the config, we squash the field down.
   933  		squash := d.config.Squash && v.Kind() == reflect.Struct && f.Anonymous
   934  
   935  		v = dereferencePtrToStructIfNeeded(v, d.config.TagName)
   936  
   937  		// Determine the name of the key in the map
   938  		if index := strings.Index(tagValue, ","); index != -1 {
   939  			if tagValue[:index] == "-" {
   940  				continue
   941  			}
   942  			// If "omitempty" is specified in the tag, it ignores empty values.
   943  			if strings.Index(tagValue[index+1:], "omitempty") != -1 && isEmptyValue(v) {
   944  				continue
   945  			}
   946  
   947  			// If "squash" is specified in the tag, we squash the field down.
   948  			squash = squash || strings.Index(tagValue[index+1:], "squash") != -1
   949  			if squash {
   950  				// When squashing, the embedded type can be a pointer to a struct.
   951  				if v.Kind() == reflect.Ptr && v.Elem().Kind() == reflect.Struct {
   952  					v = v.Elem()
   953  				}
   954  
   955  				// The final type must be a struct
   956  				if v.Kind() != reflect.Struct {
   957  					return fmt.Errorf("cannot squash non-struct type '%s'", v.Type())
   958  				}
   959  			}
   960  			if keyNameTagValue := tagValue[:index]; keyNameTagValue != "" {
   961  				keyName = keyNameTagValue
   962  			}
   963  		} else if len(tagValue) > 0 {
   964  			if tagValue == "-" {
   965  				continue
   966  			}
   967  			keyName = tagValue
   968  		}
   969  
   970  		switch v.Kind() {
   971  		// this is an embedded struct, so handle it differently
   972  		case reflect.Struct:
   973  			x := reflect.New(v.Type())
   974  			x.Elem().Set(v)
   975  
   976  			vType := valMap.Type()
   977  			vKeyType := vType.Key()
   978  			vElemType := vType.Elem()
   979  			mType := reflect.MapOf(vKeyType, vElemType)
   980  			vMap := reflect.MakeMap(mType)
   981  
   982  			// Creating a pointer to a map so that other methods can completely
   983  			// overwrite the map if need be (looking at you decodeMapFromMap). The
   984  			// indirection allows the underlying map to be settable (CanSet() == true)
   985  			// where as reflect.MakeMap returns an unsettable map.
   986  			addrVal := reflect.New(vMap.Type())
   987  			reflect.Indirect(addrVal).Set(vMap)
   988  
   989  			err := d.decode(keyName, x.Interface(), reflect.Indirect(addrVal))
   990  			if err != nil {
   991  				return err
   992  			}
   993  
   994  			// the underlying map may have been completely overwritten so pull
   995  			// it indirectly out of the enclosing value.
   996  			vMap = reflect.Indirect(addrVal)
   997  
   998  			if squash {
   999  				for _, k := range vMap.MapKeys() {
  1000  					valMap.SetMapIndex(k, vMap.MapIndex(k))
  1001  				}
  1002  			} else {
  1003  				valMap.SetMapIndex(reflect.ValueOf(keyName), vMap)
  1004  			}
  1005  
  1006  		default:
  1007  			valMap.SetMapIndex(reflect.ValueOf(keyName), v)
  1008  		}
  1009  	}
  1010  
  1011  	if val.CanAddr() {
  1012  		val.Set(valMap)
  1013  	}
  1014  
  1015  	return nil
  1016  }
  1017  
  1018  func (d *Decoder) decodePtr(name string, data interface{}, val reflect.Value) (bool, error) {
  1019  	// If the input data is nil, then we want to just set the output
  1020  	// pointer to be nil as well.
  1021  	isNil := data == nil
  1022  	if !isNil {
  1023  		switch v := reflect.Indirect(reflect.ValueOf(data)); v.Kind() {
  1024  		case reflect.Chan,
  1025  			reflect.Func,
  1026  			reflect.Interface,
  1027  			reflect.Map,
  1028  			reflect.Ptr,
  1029  			reflect.Slice:
  1030  			isNil = v.IsNil()
  1031  		}
  1032  	}
  1033  	if isNil {
  1034  		if !val.IsNil() && val.CanSet() {
  1035  			nilValue := reflect.New(val.Type()).Elem()
  1036  			val.Set(nilValue)
  1037  		}
  1038  
  1039  		return true, nil
  1040  	}
  1041  
  1042  	// Create an element of the concrete (non pointer) type and decode
  1043  	// into that. Then set the value of the pointer to this type.
  1044  	valType := val.Type()
  1045  	valElemType := valType.Elem()
  1046  	if val.CanSet() {
  1047  		realVal := val
  1048  		if realVal.IsNil() || d.config.ZeroFields {
  1049  			realVal = reflect.New(valElemType)
  1050  		}
  1051  
  1052  		if err := d.decode(name, data, reflect.Indirect(realVal)); err != nil {
  1053  			return false, err
  1054  		}
  1055  
  1056  		val.Set(realVal)
  1057  	} else {
  1058  		if err := d.decode(name, data, reflect.Indirect(val)); err != nil {
  1059  			return false, err
  1060  		}
  1061  	}
  1062  	return false, nil
  1063  }
  1064  
  1065  func (d *Decoder) decodeFunc(name string, data interface{}, val reflect.Value) error {
  1066  	// Create an element of the concrete (non pointer) type and decode
  1067  	// into that. Then set the value of the pointer to this type.
  1068  	dataVal := reflect.Indirect(reflect.ValueOf(data))
  1069  	if val.Type() != dataVal.Type() {
  1070  		return fmt.Errorf(
  1071  			"'%s' expected type '%s', got unconvertible type '%s', value: '%v'",
  1072  			name, val.Type(), dataVal.Type(), data)
  1073  	}
  1074  	val.Set(dataVal)
  1075  	return nil
  1076  }
  1077  
  1078  func (d *Decoder) decodeSlice(name string, data interface{}, val reflect.Value) error {
  1079  	dataVal := reflect.Indirect(reflect.ValueOf(data))
  1080  	dataValKind := dataVal.Kind()
  1081  	valType := val.Type()
  1082  	valElemType := valType.Elem()
  1083  	sliceType := reflect.SliceOf(valElemType)
  1084  
  1085  	// If we have a non array/slice type then we first attempt to convert.
  1086  	if dataValKind != reflect.Array && dataValKind != reflect.Slice {
  1087  		if d.config.WeaklyTypedInput {
  1088  			switch {
  1089  			// Slice and array we use the normal logic
  1090  			case dataValKind == reflect.Slice, dataValKind == reflect.Array:
  1091  				break
  1092  
  1093  			// Empty maps turn into empty slices
  1094  			case dataValKind == reflect.Map:
  1095  				if dataVal.Len() == 0 {
  1096  					val.Set(reflect.MakeSlice(sliceType, 0, 0))
  1097  					return nil
  1098  				}
  1099  				// Create slice of maps of other sizes
  1100  				return d.decodeSlice(name, []interface{}{data}, val)
  1101  
  1102  			case dataValKind == reflect.String && valElemType.Kind() == reflect.Uint8:
  1103  				return d.decodeSlice(name, []byte(dataVal.String()), val)
  1104  
  1105  			// All other types we try to convert to the slice type
  1106  			// and "lift" it into it. i.e. a string becomes a string slice.
  1107  			default:
  1108  				// Just re-try this function with data as a slice.
  1109  				return d.decodeSlice(name, []interface{}{data}, val)
  1110  			}
  1111  		}
  1112  
  1113  		return fmt.Errorf(
  1114  			"'%s': source data must be an array or slice, got %s", name, dataValKind)
  1115  	}
  1116  
  1117  	// If the input value is nil, then don't allocate since empty != nil
  1118  	if dataValKind != reflect.Array && dataVal.IsNil() {
  1119  		return nil
  1120  	}
  1121  
  1122  	valSlice := val
  1123  	if valSlice.IsNil() || d.config.ZeroFields {
  1124  		// Make a new slice to hold our result, same size as the original data.
  1125  		valSlice = reflect.MakeSlice(sliceType, dataVal.Len(), dataVal.Len())
  1126  	}
  1127  
  1128  	// Accumulate any errors
  1129  	errors := make([]string, 0)
  1130  
  1131  	for i := 0; i < dataVal.Len(); i++ {
  1132  		currentData := dataVal.Index(i).Interface()
  1133  		for valSlice.Len() <= i {
  1134  			valSlice = reflect.Append(valSlice, reflect.Zero(valElemType))
  1135  		}
  1136  		currentField := valSlice.Index(i)
  1137  
  1138  		fieldName := name + "[" + strconv.Itoa(i) + "]"
  1139  		if err := d.decode(fieldName, currentData, currentField); err != nil {
  1140  			errors = appendErrors(errors, err)
  1141  		}
  1142  	}
  1143  
  1144  	// Finally, set the value to the slice we built up
  1145  	val.Set(valSlice)
  1146  
  1147  	// If there were errors, we return those
  1148  	if len(errors) > 0 {
  1149  		return &Error{errors}
  1150  	}
  1151  
  1152  	return nil
  1153  }
  1154  
  1155  func (d *Decoder) decodeArray(name string, data interface{}, val reflect.Value) error {
  1156  	dataVal := reflect.Indirect(reflect.ValueOf(data))
  1157  	dataValKind := dataVal.Kind()
  1158  	valType := val.Type()
  1159  	valElemType := valType.Elem()
  1160  	arrayType := reflect.ArrayOf(valType.Len(), valElemType)
  1161  
  1162  	valArray := val
  1163  
  1164  	if valArray.Interface() == reflect.Zero(valArray.Type()).Interface() || d.config.ZeroFields {
  1165  		// Check input type
  1166  		if dataValKind != reflect.Array && dataValKind != reflect.Slice {
  1167  			if d.config.WeaklyTypedInput {
  1168  				switch {
  1169  				// Empty maps turn into empty arrays
  1170  				case dataValKind == reflect.Map:
  1171  					if dataVal.Len() == 0 {
  1172  						val.Set(reflect.Zero(arrayType))
  1173  						return nil
  1174  					}
  1175  
  1176  				// All other types we try to convert to the array type
  1177  				// and "lift" it into it. i.e. a string becomes a string array.
  1178  				default:
  1179  					// Just re-try this function with data as a slice.
  1180  					return d.decodeArray(name, []interface{}{data}, val)
  1181  				}
  1182  			}
  1183  
  1184  			return fmt.Errorf(
  1185  				"'%s': source data must be an array or slice, got %s", name, dataValKind)
  1186  
  1187  		}
  1188  		if dataVal.Len() > arrayType.Len() {
  1189  			return fmt.Errorf(
  1190  				"'%s': expected source data to have length less or equal to %d, got %d", name, arrayType.Len(), dataVal.Len())
  1191  
  1192  		}
  1193  
  1194  		// Make a new array to hold our result, same size as the original data.
  1195  		valArray = reflect.New(arrayType).Elem()
  1196  	}
  1197  
  1198  	// Accumulate any errors
  1199  	errors := make([]string, 0)
  1200  
  1201  	for i := 0; i < dataVal.Len(); i++ {
  1202  		currentData := dataVal.Index(i).Interface()
  1203  		currentField := valArray.Index(i)
  1204  
  1205  		fieldName := name + "[" + strconv.Itoa(i) + "]"
  1206  		if err := d.decode(fieldName, currentData, currentField); err != nil {
  1207  			errors = appendErrors(errors, err)
  1208  		}
  1209  	}
  1210  
  1211  	// Finally, set the value to the array we built up
  1212  	val.Set(valArray)
  1213  
  1214  	// If there were errors, we return those
  1215  	if len(errors) > 0 {
  1216  		return &Error{errors}
  1217  	}
  1218  
  1219  	return nil
  1220  }
  1221  
  1222  func (d *Decoder) decodeStruct(name string, data interface{}, val reflect.Value) error {
  1223  	dataVal := reflect.Indirect(reflect.ValueOf(data))
  1224  
  1225  	// If the type of the value to write to and the data match directly,
  1226  	// then we just set it directly instead of recursing into the structure.
  1227  	if dataVal.Type() == val.Type() {
  1228  		val.Set(dataVal)
  1229  		return nil
  1230  	}
  1231  
  1232  	dataValKind := dataVal.Kind()
  1233  	switch dataValKind {
  1234  	case reflect.Map:
  1235  		return d.decodeStructFromMap(name, dataVal, val)
  1236  
  1237  	case reflect.Struct:
  1238  		// Not the most efficient way to do this but we can optimize later if
  1239  		// we want to. To convert from struct to struct we go to map first
  1240  		// as an intermediary.
  1241  
  1242  		// Make a new map to hold our result
  1243  		mapType := reflect.TypeOf((map[string]interface{})(nil))
  1244  		mval := reflect.MakeMap(mapType)
  1245  
  1246  		// Creating a pointer to a map so that other methods can completely
  1247  		// overwrite the map if need be (looking at you decodeMapFromMap). The
  1248  		// indirection allows the underlying map to be settable (CanSet() == true)
  1249  		// where as reflect.MakeMap returns an unsettable map.
  1250  		addrVal := reflect.New(mval.Type())
  1251  
  1252  		reflect.Indirect(addrVal).Set(mval)
  1253  		if err := d.decodeMapFromStruct(name, dataVal, reflect.Indirect(addrVal), mval); err != nil {
  1254  			return err
  1255  		}
  1256  
  1257  		result := d.decodeStructFromMap(name, reflect.Indirect(addrVal), val)
  1258  		return result
  1259  
  1260  	default:
  1261  		return fmt.Errorf("'%s' expected a map, got '%s'", name, dataVal.Kind())
  1262  	}
  1263  }
  1264  
  1265  func (d *Decoder) decodeStructFromMap(name string, dataVal, val reflect.Value) error {
  1266  	dataValType := dataVal.Type()
  1267  	if kind := dataValType.Key().Kind(); kind != reflect.String && kind != reflect.Interface {
  1268  		return fmt.Errorf(
  1269  			"'%s' needs a map with string keys, has '%s' keys",
  1270  			name, dataValType.Key().Kind())
  1271  	}
  1272  
  1273  	dataValKeys := make(map[reflect.Value]struct{})
  1274  	dataValKeysUnused := make(map[interface{}]struct{})
  1275  	for _, dataValKey := range dataVal.MapKeys() {
  1276  		dataValKeys[dataValKey] = struct{}{}
  1277  		dataValKeysUnused[dataValKey.Interface()] = struct{}{}
  1278  	}
  1279  
  1280  	targetValKeysUnused := make(map[interface{}]struct{})
  1281  	errors := make([]string, 0)
  1282  
  1283  	// This slice will keep track of all the structs we'll be decoding.
  1284  	// There can be more than one struct if there are embedded structs
  1285  	// that are squashed.
  1286  	structs := make([]reflect.Value, 1, 5)
  1287  	structs[0] = val
  1288  
  1289  	// Compile the list of all the fields that we're going to be decoding
  1290  	// from all the structs.
  1291  	type field struct {
  1292  		field reflect.StructField
  1293  		val   reflect.Value
  1294  	}
  1295  
  1296  	// remainField is set to a valid field set with the "remain" tag if
  1297  	// we are keeping track of remaining values.
  1298  	var remainField *field
  1299  
  1300  	fields := []field{}
  1301  	for len(structs) > 0 {
  1302  		structVal := structs[0]
  1303  		structs = structs[1:]
  1304  
  1305  		structType := structVal.Type()
  1306  
  1307  		for i := 0; i < structType.NumField(); i++ {
  1308  			fieldType := structType.Field(i)
  1309  			fieldVal := structVal.Field(i)
  1310  			if fieldVal.Kind() == reflect.Ptr && fieldVal.Elem().Kind() == reflect.Struct {
  1311  				// Handle embedded struct pointers as embedded structs.
  1312  				fieldVal = fieldVal.Elem()
  1313  			}
  1314  
  1315  			// If "squash" is specified in the tag, we squash the field down.
  1316  			squash := d.config.Squash && fieldVal.Kind() == reflect.Struct && fieldType.Anonymous
  1317  			remain := false
  1318  
  1319  			// We always parse the tags cause we're looking for other tags too
  1320  			tagParts := strings.Split(fieldType.Tag.Get(d.config.TagName), ",")
  1321  			for _, tag := range tagParts[1:] {
  1322  				if tag == "squash" {
  1323  					squash = true
  1324  					break
  1325  				}
  1326  
  1327  				if tag == "remain" {
  1328  					remain = true
  1329  					break
  1330  				}
  1331  			}
  1332  
  1333  			if squash {
  1334  				if fieldVal.Kind() != reflect.Struct {
  1335  					errors = appendErrors(errors,
  1336  						fmt.Errorf("%s: unsupported type for squash: %s", fieldType.Name, fieldVal.Kind()))
  1337  				} else {
  1338  					structs = append(structs, fieldVal)
  1339  				}
  1340  				continue
  1341  			}
  1342  
  1343  			// Build our field
  1344  			if remain {
  1345  				remainField = &field{fieldType, fieldVal}
  1346  			} else {
  1347  				// Normal struct field, store it away
  1348  				fields = append(fields, field{fieldType, fieldVal})
  1349  			}
  1350  		}
  1351  	}
  1352  
  1353  	// for fieldType, field := range fields {
  1354  	for _, f := range fields {
  1355  		field, fieldValue := f.field, f.val
  1356  		fieldName := field.Name
  1357  
  1358  		tagValue := field.Tag.Get(d.config.TagName)
  1359  		tagValue = strings.SplitN(tagValue, ",", 2)[0]
  1360  		if tagValue != "" {
  1361  			fieldName = tagValue
  1362  		}
  1363  
  1364  		rawMapKey := reflect.ValueOf(fieldName)
  1365  		rawMapVal := dataVal.MapIndex(rawMapKey)
  1366  		if !rawMapVal.IsValid() {
  1367  			// Do a slower search by iterating over each key and
  1368  			// doing case-insensitive search.
  1369  			for dataValKey := range dataValKeys {
  1370  				mK, ok := dataValKey.Interface().(string)
  1371  				if !ok {
  1372  					// Not a string key
  1373  					continue
  1374  				}
  1375  
  1376  				if d.config.MatchName(mK, fieldName) {
  1377  					rawMapKey = dataValKey
  1378  					rawMapVal = dataVal.MapIndex(dataValKey)
  1379  					break
  1380  				}
  1381  			}
  1382  
  1383  			if !rawMapVal.IsValid() {
  1384  				// There was no matching key in the map for the value in
  1385  				// the struct. Remember it for potential errors and metadata.
  1386  				targetValKeysUnused[fieldName] = struct{}{}
  1387  				continue
  1388  			}
  1389  		}
  1390  
  1391  		if !fieldValue.IsValid() {
  1392  			// This should never happen
  1393  			panic("field is not valid")
  1394  		}
  1395  
  1396  		// If we can't set the field, then it is unexported or something,
  1397  		// and we just continue onwards.
  1398  		if !fieldValue.CanSet() {
  1399  			continue
  1400  		}
  1401  
  1402  		// Delete the key we're using from the unused map so we stop tracking
  1403  		delete(dataValKeysUnused, rawMapKey.Interface())
  1404  
  1405  		// If the name is empty string, then we're at the root, and we
  1406  		// don't dot-join the fields.
  1407  		if name != "" {
  1408  			fieldName = name + "." + fieldName
  1409  		}
  1410  
  1411  		if err := d.decode(fieldName, rawMapVal.Interface(), fieldValue); err != nil {
  1412  			errors = appendErrors(errors, err)
  1413  		}
  1414  	}
  1415  
  1416  	// If we have a "remain"-tagged field and we have unused keys then
  1417  	// we put the unused keys directly into the remain field.
  1418  	if remainField != nil && len(dataValKeysUnused) > 0 {
  1419  		// Build a map of only the unused values
  1420  		remain := map[interface{}]interface{}{}
  1421  		for key := range dataValKeysUnused {
  1422  			remain[key] = dataVal.MapIndex(reflect.ValueOf(key)).Interface()
  1423  		}
  1424  
  1425  		// Decode it as-if we were just decoding this map onto our map.
  1426  		if err := d.decodeMap(name, remain, remainField.val); err != nil {
  1427  			errors = appendErrors(errors, err)
  1428  		}
  1429  
  1430  		// Set the map to nil so we have none so that the next check will
  1431  		// not error (ErrorUnused)
  1432  		dataValKeysUnused = nil
  1433  	}
  1434  
  1435  	if d.config.ErrorUnused && len(dataValKeysUnused) > 0 {
  1436  		keys := make([]string, 0, len(dataValKeysUnused))
  1437  		for rawKey := range dataValKeysUnused {
  1438  			keys = append(keys, rawKey.(string))
  1439  		}
  1440  		sort.Strings(keys)
  1441  
  1442  		err := fmt.Errorf("'%s' has invalid keys: %s", name, strings.Join(keys, ", "))
  1443  		errors = appendErrors(errors, err)
  1444  	}
  1445  
  1446  	if d.config.ErrorUnset && len(targetValKeysUnused) > 0 {
  1447  		keys := make([]string, 0, len(targetValKeysUnused))
  1448  		for rawKey := range targetValKeysUnused {
  1449  			keys = append(keys, rawKey.(string))
  1450  		}
  1451  		sort.Strings(keys)
  1452  
  1453  		err := fmt.Errorf("'%s' has unset fields: %s", name, strings.Join(keys, ", "))
  1454  		errors = appendErrors(errors, err)
  1455  	}
  1456  
  1457  	if len(errors) > 0 {
  1458  		return &Error{errors}
  1459  	}
  1460  
  1461  	// Add the unused keys to the list of unused keys if we're tracking metadata
  1462  	if d.config.Metadata != nil {
  1463  		for rawKey := range dataValKeysUnused {
  1464  			key := rawKey.(string)
  1465  			if name != "" {
  1466  				key = name + "." + key
  1467  			}
  1468  
  1469  			d.config.Metadata.Unused = append(d.config.Metadata.Unused, key)
  1470  		}
  1471  		for rawKey := range targetValKeysUnused {
  1472  			key := rawKey.(string)
  1473  			if name != "" {
  1474  				key = name + "." + key
  1475  			}
  1476  
  1477  			d.config.Metadata.Unset = append(d.config.Metadata.Unset, key)
  1478  		}
  1479  	}
  1480  
  1481  	return nil
  1482  }
  1483  
  1484  func isEmptyValue(v reflect.Value) bool {
  1485  	switch getKind(v) {
  1486  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
  1487  		return v.Len() == 0
  1488  	case reflect.Bool:
  1489  		return !v.Bool()
  1490  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
  1491  		return v.Int() == 0
  1492  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
  1493  		return v.Uint() == 0
  1494  	case reflect.Float32, reflect.Float64:
  1495  		return v.Float() == 0
  1496  	case reflect.Interface, reflect.Ptr:
  1497  		return v.IsNil()
  1498  	}
  1499  	return false
  1500  }
  1501  
  1502  func getKind(val reflect.Value) reflect.Kind {
  1503  	kind := val.Kind()
  1504  
  1505  	switch {
  1506  	case kind >= reflect.Int && kind <= reflect.Int64:
  1507  		return reflect.Int
  1508  	case kind >= reflect.Uint && kind <= reflect.Uint64:
  1509  		return reflect.Uint
  1510  	case kind >= reflect.Float32 && kind <= reflect.Float64:
  1511  		return reflect.Float32
  1512  	default:
  1513  		return kind
  1514  	}
  1515  }
  1516  
  1517  func isStructTypeConvertibleToMap(typ reflect.Type, checkMapstructureTags bool, tagName string) bool {
  1518  	for i := 0; i < typ.NumField(); i++ {
  1519  		f := typ.Field(i)
  1520  		if f.PkgPath == "" && !checkMapstructureTags { // check for unexported fields
  1521  			return true
  1522  		}
  1523  		if checkMapstructureTags && f.Tag.Get(tagName) != "" { // check for mapstructure tags inside
  1524  			return true
  1525  		}
  1526  	}
  1527  	return false
  1528  }
  1529  
  1530  func dereferencePtrToStructIfNeeded(v reflect.Value, tagName string) reflect.Value {
  1531  	if v.Kind() != reflect.Ptr || v.Elem().Kind() != reflect.Struct {
  1532  		return v
  1533  	}
  1534  	deref := v.Elem()
  1535  	derefT := deref.Type()
  1536  	if isStructTypeConvertibleToMap(derefT, true, tagName) {
  1537  		return deref
  1538  	}
  1539  	return v
  1540  }
  1541  

View as plain text