...

Text file src/github.com/letsencrypt/boulder/test/load-generator/latency-charter.py

Documentation: github.com/letsencrypt/boulder/test/load-generator

     1#!/usr/bin/python
     2
     3import matplotlib
     4import matplotlib.pyplot as plt
     5from matplotlib import gridspec
     6import numpy as np
     7import datetime
     8import json
     9import pandas
    10import argparse
    11import os
    12matplotlib.style.use('ggplot')
    13
    14# sacrificial plot for single legend
    15matplotlib.rcParams['figure.figsize'] = 1, 1
    16randFig = plt.figure()
    17randAx = plt.subplot()
    18randAx.plot(0, 0, color='green', label='good', marker='+')
    19randAx.plot(0, 0, color='red', label='failed', marker='x')
    20randAx.plot(0, 0, color='black', label='sent', linestyle='--')
    21randAx.plot(0, 0, color='green', label='50th quantile')
    22randAx.plot(0, 0, color='orange', label='90th quantile')
    23randAx.plot(0, 0, color='red', label='99th quantile')
    24handles, labels = randAx.get_legend_handles_labels()
    25
    26# big ol' plotting method
    27def plot_section(all_data, title, outputPath):
    28    # group calls by the endpoint/method
    29    actions = all_data.groupby('action')
    30    h = len(actions.groups.keys())
    31    matplotlib.rcParams['figure.figsize'] = 20, 3 * h
    32
    33    fig = plt.figure()
    34    fig.legend(handles, labels, ncol=6, fontsize=16, framealpha=0, loc='upper center')
    35    if title is not None:
    36        fig.suptitle(title, fontsize=20, y=0.93)
    37    gs = gridspec.GridSpec(h, 3)
    38
    39    # figure out left and right datetime bounds
    40    started = all_data['sent'].min()
    41    stopped = all_data['finished'].max()
    42
    43    i = 0
    44    # plot one row of charts for each endpoint/method combination
    45    for section in actions.groups.keys():
    46        # setup the tree charts
    47        ax = fig.add_subplot(gs[i, 0])
    48        ax.set_title(section)
    49        ax.set_xlim(started, stopped)
    50        ax2 = fig.add_subplot(gs[i, 2])
    51        ax2.set_xlim(started, stopped)
    52        ax3 = fig.add_subplot(gs[i, 1])
    53        ax3.set_xlim(started, stopped)
    54
    55        # find the maximum y value and set it across all three charts
    56        calls = actions.get_group(section)
    57        tookMax = calls['took'].max()
    58        ax.set_ylim(0, tookMax+tookMax*0.1)
    59        ax2.set_ylim(0, tookMax+tookMax*0.1)
    60        ax3.set_ylim(0, tookMax+tookMax*0.1)
    61
    62        groups = calls.groupby('type')
    63        if groups.groups.get('error', False) is not False:
    64            bad = groups.get_group('error')
    65            ax.plot_date(bad['finished'], bad['took'], color='red', marker='x', label='error')
    66
    67            bad_rate = bad.set_index('finished')
    68            bad_rate['rate'] = [0] * len(bad_rate.index)
    69            bad_rate = bad_rate.resample('5S').count()
    70            bad_rate['rate'] = bad_rate['rate'].divide(5)
    71            rateMax = bad_rate['rate'].max()
    72            ax2.plot_date(bad_rate.index, bad_rate['rate'], linestyle='-', marker='', color='red', label='error')
    73        if groups.groups.get('good', False) is not False:
    74            good = groups.get_group('good')
    75            ax.plot_date(good['finished'], good['took'], color='green', marker='+', label='good')
    76
    77            good_rate = good.set_index('finished')
    78            good_rate['rate'] = [0] * len(good_rate.index)
    79            good_rate = good_rate.resample('5S').count()
    80            good_rate['rate'] = good_rate['rate'].divide(5)
    81            rateMax = good_rate['rate'].max()
    82            ax2.plot_date(good_rate.index, good_rate['rate'], linestyle='-', marker='', color='green', label='good')
    83        ax.set_ylabel('Latency (ms)')
    84
    85        # calculate the request rate
    86        sent_rate = pandas.DataFrame(calls['sent'])
    87        sent_rate = sent_rate.set_index('sent')
    88        sent_rate['rate'] = [0] * len(sent_rate.index)
    89        sent_rate = sent_rate.resample('5S').count()
    90        sent_rate['rate'] = sent_rate['rate'].divide(5)
    91        if sent_rate['rate'].max() > rateMax:
    92            rateMax = sent_rate['rate'].max()
    93        ax2.plot_date(sent_rate.index, sent_rate['rate'], linestyle='--', marker='', color='black', label='sent')
    94        ax2.set_ylim(0, rateMax+rateMax*0.1)
    95        ax2.set_ylabel('Rate (per second)')
    96
    97        # calculate and plot latency quantiles
    98        calls = calls.set_index('finished')
    99        calls = calls.sort_index()
   100        quan = pandas.DataFrame(calls['took'])
   101        for q, c in [[.5, 'green'], [.9, 'orange'], [.99, 'red']]:
   102            quanN = quan.rolling(500, center=True).quantile(q)
   103            ax3.plot(quanN['took'].index, quanN['took'], color=c)
   104
   105        ax3.set_ylabel('Latency quantiles (ms)')
   106
   107        i += 1
   108
   109    # format x axes
   110    for ax in fig.axes:
   111        matplotlib.pyplot.sca(ax)
   112        plt.xticks(rotation=30, ha='right')
   113        majorFormatter = matplotlib.dates.DateFormatter('%H:%M:%S')
   114        ax.xaxis.set_major_formatter(majorFormatter)
   115
   116    # save image
   117    gs.update(wspace=0.275, hspace=0.5)
   118    fig.savefig(outputPath, bbox_inches='tight')
   119
   120# and the main event
   121parser = argparse.ArgumentParser()
   122parser.add_argument('chartData', type=str, help='Path to file containing JSON chart output from load-generator')
   123parser.add_argument('--output', type=str, help='Path to save output to', default='latency-chart.png')
   124parser.add_argument('--title', type=str, help='Chart title')
   125args = parser.parse_args()
   126
   127with open(args.chartData) as data_file:
   128    stuff = []
   129    for l in data_file.readlines():
   130        stuff.append(json.loads(l))
   131
   132df = pandas.DataFrame(stuff)
   133df['finished'] = pandas.to_datetime(df['finished']).astype(datetime.datetime)
   134df['sent'] = pandas.to_datetime(df['sent']).astype(datetime.datetime)
   135df['took'] = df['took'].divide(1000000)
   136
   137plot_section(df, args.title, args.output)

View as plain text