...

Source file src/github.com/klauspost/compress/fse/compress.go

Documentation: github.com/klauspost/compress/fse

     1  // Copyright 2018 Klaus Post. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  // Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
     5  
     6  package fse
     7  
     8  import (
     9  	"errors"
    10  	"fmt"
    11  )
    12  
    13  // Compress the input bytes. Input must be < 2GB.
    14  // Provide a Scratch buffer to avoid memory allocations.
    15  // Note that the output is also kept in the scratch buffer.
    16  // If input is too hard to compress, ErrIncompressible is returned.
    17  // If input is a single byte value repeated ErrUseRLE is returned.
    18  func Compress(in []byte, s *Scratch) ([]byte, error) {
    19  	if len(in) <= 1 {
    20  		return nil, ErrIncompressible
    21  	}
    22  	if len(in) > (2<<30)-1 {
    23  		return nil, errors.New("input too big, must be < 2GB")
    24  	}
    25  	s, err := s.prepare(in)
    26  	if err != nil {
    27  		return nil, err
    28  	}
    29  
    30  	// Create histogram, if none was provided.
    31  	maxCount := s.maxCount
    32  	if maxCount == 0 {
    33  		maxCount = s.countSimple(in)
    34  	}
    35  	// Reset for next run.
    36  	s.clearCount = true
    37  	s.maxCount = 0
    38  	if maxCount == len(in) {
    39  		// One symbol, use RLE
    40  		return nil, ErrUseRLE
    41  	}
    42  	if maxCount == 1 || maxCount < (len(in)>>7) {
    43  		// Each symbol present maximum once or too well distributed.
    44  		return nil, ErrIncompressible
    45  	}
    46  	s.optimalTableLog()
    47  	err = s.normalizeCount()
    48  	if err != nil {
    49  		return nil, err
    50  	}
    51  	err = s.writeCount()
    52  	if err != nil {
    53  		return nil, err
    54  	}
    55  
    56  	if false {
    57  		err = s.validateNorm()
    58  		if err != nil {
    59  			return nil, err
    60  		}
    61  	}
    62  
    63  	err = s.buildCTable()
    64  	if err != nil {
    65  		return nil, err
    66  	}
    67  	err = s.compress(in)
    68  	if err != nil {
    69  		return nil, err
    70  	}
    71  	s.Out = s.bw.out
    72  	// Check if we compressed.
    73  	if len(s.Out) >= len(in) {
    74  		return nil, ErrIncompressible
    75  	}
    76  	return s.Out, nil
    77  }
    78  
    79  // cState contains the compression state of a stream.
    80  type cState struct {
    81  	bw         *bitWriter
    82  	stateTable []uint16
    83  	state      uint16
    84  }
    85  
    86  // init will initialize the compression state to the first symbol of the stream.
    87  func (c *cState) init(bw *bitWriter, ct *cTable, tableLog uint8, first symbolTransform) {
    88  	c.bw = bw
    89  	c.stateTable = ct.stateTable
    90  
    91  	nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16
    92  	im := int32((nbBitsOut << 16) - first.deltaNbBits)
    93  	lu := (im >> nbBitsOut) + first.deltaFindState
    94  	c.state = c.stateTable[lu]
    95  }
    96  
    97  // encode the output symbol provided and write it to the bitstream.
    98  func (c *cState) encode(symbolTT symbolTransform) {
    99  	nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
   100  	dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState
   101  	c.bw.addBits16NC(c.state, uint8(nbBitsOut))
   102  	c.state = c.stateTable[dstState]
   103  }
   104  
   105  // encode the output symbol provided and write it to the bitstream.
   106  func (c *cState) encodeZero(symbolTT symbolTransform) {
   107  	nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
   108  	dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState
   109  	c.bw.addBits16ZeroNC(c.state, uint8(nbBitsOut))
   110  	c.state = c.stateTable[dstState]
   111  }
   112  
   113  // flush will write the tablelog to the output and flush the remaining full bytes.
   114  func (c *cState) flush(tableLog uint8) {
   115  	c.bw.flush32()
   116  	c.bw.addBits16NC(c.state, tableLog)
   117  	c.bw.flush()
   118  }
   119  
   120  // compress is the main compression loop that will encode the input from the last byte to the first.
   121  func (s *Scratch) compress(src []byte) error {
   122  	if len(src) <= 2 {
   123  		return errors.New("compress: src too small")
   124  	}
   125  	tt := s.ct.symbolTT[:256]
   126  	s.bw.reset(s.Out)
   127  
   128  	// Our two states each encodes every second byte.
   129  	// Last byte encoded (first byte decoded) will always be encoded by c1.
   130  	var c1, c2 cState
   131  
   132  	// Encode so remaining size is divisible by 4.
   133  	ip := len(src)
   134  	if ip&1 == 1 {
   135  		c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]])
   136  		c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]])
   137  		c1.encodeZero(tt[src[ip-3]])
   138  		ip -= 3
   139  	} else {
   140  		c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]])
   141  		c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]])
   142  		ip -= 2
   143  	}
   144  	if ip&2 != 0 {
   145  		c2.encodeZero(tt[src[ip-1]])
   146  		c1.encodeZero(tt[src[ip-2]])
   147  		ip -= 2
   148  	}
   149  	src = src[:ip]
   150  
   151  	// Main compression loop.
   152  	switch {
   153  	case !s.zeroBits && s.actualTableLog <= 8:
   154  		// We can encode 4 symbols without requiring a flush.
   155  		// We do not need to check if any output is 0 bits.
   156  		for ; len(src) >= 4; src = src[:len(src)-4] {
   157  			s.bw.flush32()
   158  			v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1]
   159  			c2.encode(tt[v0])
   160  			c1.encode(tt[v1])
   161  			c2.encode(tt[v2])
   162  			c1.encode(tt[v3])
   163  		}
   164  	case !s.zeroBits:
   165  		// We do not need to check if any output is 0 bits.
   166  		for ; len(src) >= 4; src = src[:len(src)-4] {
   167  			s.bw.flush32()
   168  			v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1]
   169  			c2.encode(tt[v0])
   170  			c1.encode(tt[v1])
   171  			s.bw.flush32()
   172  			c2.encode(tt[v2])
   173  			c1.encode(tt[v3])
   174  		}
   175  	case s.actualTableLog <= 8:
   176  		// We can encode 4 symbols without requiring a flush
   177  		for ; len(src) >= 4; src = src[:len(src)-4] {
   178  			s.bw.flush32()
   179  			v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1]
   180  			c2.encodeZero(tt[v0])
   181  			c1.encodeZero(tt[v1])
   182  			c2.encodeZero(tt[v2])
   183  			c1.encodeZero(tt[v3])
   184  		}
   185  	default:
   186  		for ; len(src) >= 4; src = src[:len(src)-4] {
   187  			s.bw.flush32()
   188  			v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1]
   189  			c2.encodeZero(tt[v0])
   190  			c1.encodeZero(tt[v1])
   191  			s.bw.flush32()
   192  			c2.encodeZero(tt[v2])
   193  			c1.encodeZero(tt[v3])
   194  		}
   195  	}
   196  
   197  	// Flush final state.
   198  	// Used to initialize state when decoding.
   199  	c2.flush(s.actualTableLog)
   200  	c1.flush(s.actualTableLog)
   201  
   202  	s.bw.close()
   203  	return nil
   204  }
   205  
   206  // writeCount will write the normalized histogram count to header.
   207  // This is read back by readNCount.
   208  func (s *Scratch) writeCount() error {
   209  	var (
   210  		tableLog  = s.actualTableLog
   211  		tableSize = 1 << tableLog
   212  		previous0 bool
   213  		charnum   uint16
   214  
   215  		maxHeaderSize = ((int(s.symbolLen)*int(tableLog) + 4 + 2) >> 3) + 3
   216  
   217  		// Write Table Size
   218  		bitStream = uint32(tableLog - minTablelog)
   219  		bitCount  = uint(4)
   220  		remaining = int16(tableSize + 1) /* +1 for extra accuracy */
   221  		threshold = int16(tableSize)
   222  		nbBits    = uint(tableLog + 1)
   223  	)
   224  	if cap(s.Out) < maxHeaderSize {
   225  		s.Out = make([]byte, 0, s.br.remain()+maxHeaderSize)
   226  	}
   227  	outP := uint(0)
   228  	out := s.Out[:maxHeaderSize]
   229  
   230  	// stops at 1
   231  	for remaining > 1 {
   232  		if previous0 {
   233  			start := charnum
   234  			for s.norm[charnum] == 0 {
   235  				charnum++
   236  			}
   237  			for charnum >= start+24 {
   238  				start += 24
   239  				bitStream += uint32(0xFFFF) << bitCount
   240  				out[outP] = byte(bitStream)
   241  				out[outP+1] = byte(bitStream >> 8)
   242  				outP += 2
   243  				bitStream >>= 16
   244  			}
   245  			for charnum >= start+3 {
   246  				start += 3
   247  				bitStream += 3 << bitCount
   248  				bitCount += 2
   249  			}
   250  			bitStream += uint32(charnum-start) << bitCount
   251  			bitCount += 2
   252  			if bitCount > 16 {
   253  				out[outP] = byte(bitStream)
   254  				out[outP+1] = byte(bitStream >> 8)
   255  				outP += 2
   256  				bitStream >>= 16
   257  				bitCount -= 16
   258  			}
   259  		}
   260  
   261  		count := s.norm[charnum]
   262  		charnum++
   263  		max := (2*threshold - 1) - remaining
   264  		if count < 0 {
   265  			remaining += count
   266  		} else {
   267  			remaining -= count
   268  		}
   269  		count++ // +1 for extra accuracy
   270  		if count >= threshold {
   271  			count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[
   272  		}
   273  		bitStream += uint32(count) << bitCount
   274  		bitCount += nbBits
   275  		if count < max {
   276  			bitCount--
   277  		}
   278  
   279  		previous0 = count == 1
   280  		if remaining < 1 {
   281  			return errors.New("internal error: remaining<1")
   282  		}
   283  		for remaining < threshold {
   284  			nbBits--
   285  			threshold >>= 1
   286  		}
   287  
   288  		if bitCount > 16 {
   289  			out[outP] = byte(bitStream)
   290  			out[outP+1] = byte(bitStream >> 8)
   291  			outP += 2
   292  			bitStream >>= 16
   293  			bitCount -= 16
   294  		}
   295  	}
   296  
   297  	out[outP] = byte(bitStream)
   298  	out[outP+1] = byte(bitStream >> 8)
   299  	outP += (bitCount + 7) / 8
   300  
   301  	if charnum > s.symbolLen {
   302  		return errors.New("internal error: charnum > s.symbolLen")
   303  	}
   304  	s.Out = out[:outP]
   305  	return nil
   306  }
   307  
   308  // symbolTransform contains the state transform for a symbol.
   309  type symbolTransform struct {
   310  	deltaFindState int32
   311  	deltaNbBits    uint32
   312  }
   313  
   314  // String prints values as a human readable string.
   315  func (s symbolTransform) String() string {
   316  	return fmt.Sprintf("dnbits: %08x, fs:%d", s.deltaNbBits, s.deltaFindState)
   317  }
   318  
   319  // cTable contains tables used for compression.
   320  type cTable struct {
   321  	tableSymbol []byte
   322  	stateTable  []uint16
   323  	symbolTT    []symbolTransform
   324  }
   325  
   326  // allocCtable will allocate tables needed for compression.
   327  // If existing tables a re big enough, they are simply re-used.
   328  func (s *Scratch) allocCtable() {
   329  	tableSize := 1 << s.actualTableLog
   330  	// get tableSymbol that is big enough.
   331  	if cap(s.ct.tableSymbol) < tableSize {
   332  		s.ct.tableSymbol = make([]byte, tableSize)
   333  	}
   334  	s.ct.tableSymbol = s.ct.tableSymbol[:tableSize]
   335  
   336  	ctSize := tableSize
   337  	if cap(s.ct.stateTable) < ctSize {
   338  		s.ct.stateTable = make([]uint16, ctSize)
   339  	}
   340  	s.ct.stateTable = s.ct.stateTable[:ctSize]
   341  
   342  	if cap(s.ct.symbolTT) < 256 {
   343  		s.ct.symbolTT = make([]symbolTransform, 256)
   344  	}
   345  	s.ct.symbolTT = s.ct.symbolTT[:256]
   346  }
   347  
   348  // buildCTable will populate the compression table so it is ready to be used.
   349  func (s *Scratch) buildCTable() error {
   350  	tableSize := uint32(1 << s.actualTableLog)
   351  	highThreshold := tableSize - 1
   352  	var cumul [maxSymbolValue + 2]int16
   353  
   354  	s.allocCtable()
   355  	tableSymbol := s.ct.tableSymbol[:tableSize]
   356  	// symbol start positions
   357  	{
   358  		cumul[0] = 0
   359  		for ui, v := range s.norm[:s.symbolLen-1] {
   360  			u := byte(ui) // one less than reference
   361  			if v == -1 {
   362  				// Low proba symbol
   363  				cumul[u+1] = cumul[u] + 1
   364  				tableSymbol[highThreshold] = u
   365  				highThreshold--
   366  			} else {
   367  				cumul[u+1] = cumul[u] + v
   368  			}
   369  		}
   370  		// Encode last symbol separately to avoid overflowing u
   371  		u := int(s.symbolLen - 1)
   372  		v := s.norm[s.symbolLen-1]
   373  		if v == -1 {
   374  			// Low proba symbol
   375  			cumul[u+1] = cumul[u] + 1
   376  			tableSymbol[highThreshold] = byte(u)
   377  			highThreshold--
   378  		} else {
   379  			cumul[u+1] = cumul[u] + v
   380  		}
   381  		if uint32(cumul[s.symbolLen]) != tableSize {
   382  			return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize)
   383  		}
   384  		cumul[s.symbolLen] = int16(tableSize) + 1
   385  	}
   386  	// Spread symbols
   387  	s.zeroBits = false
   388  	{
   389  		step := tableStep(tableSize)
   390  		tableMask := tableSize - 1
   391  		var position uint32
   392  		// if any symbol > largeLimit, we may have 0 bits output.
   393  		largeLimit := int16(1 << (s.actualTableLog - 1))
   394  		for ui, v := range s.norm[:s.symbolLen] {
   395  			symbol := byte(ui)
   396  			if v > largeLimit {
   397  				s.zeroBits = true
   398  			}
   399  			for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ {
   400  				tableSymbol[position] = symbol
   401  				position = (position + step) & tableMask
   402  				for position > highThreshold {
   403  					position = (position + step) & tableMask
   404  				} /* Low proba area */
   405  			}
   406  		}
   407  
   408  		// Check if we have gone through all positions
   409  		if position != 0 {
   410  			return errors.New("position!=0")
   411  		}
   412  	}
   413  
   414  	// Build table
   415  	table := s.ct.stateTable
   416  	{
   417  		tsi := int(tableSize)
   418  		for u, v := range tableSymbol {
   419  			// TableU16 : sorted by symbol order; gives next state value
   420  			table[cumul[v]] = uint16(tsi + u)
   421  			cumul[v]++
   422  		}
   423  	}
   424  
   425  	// Build Symbol Transformation Table
   426  	{
   427  		total := int16(0)
   428  		symbolTT := s.ct.symbolTT[:s.symbolLen]
   429  		tableLog := s.actualTableLog
   430  		tl := (uint32(tableLog) << 16) - (1 << tableLog)
   431  		for i, v := range s.norm[:s.symbolLen] {
   432  			switch v {
   433  			case 0:
   434  			case -1, 1:
   435  				symbolTT[i].deltaNbBits = tl
   436  				symbolTT[i].deltaFindState = int32(total - 1)
   437  				total++
   438  			default:
   439  				maxBitsOut := uint32(tableLog) - highBits(uint32(v-1))
   440  				minStatePlus := uint32(v) << maxBitsOut
   441  				symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus
   442  				symbolTT[i].deltaFindState = int32(total - v)
   443  				total += v
   444  			}
   445  		}
   446  		if total != int16(tableSize) {
   447  			return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize)
   448  		}
   449  	}
   450  	return nil
   451  }
   452  
   453  // countSimple will create a simple histogram in s.count.
   454  // Returns the biggest count.
   455  // Does not update s.clearCount.
   456  func (s *Scratch) countSimple(in []byte) (max int) {
   457  	for _, v := range in {
   458  		s.count[v]++
   459  	}
   460  	m, symlen := uint32(0), s.symbolLen
   461  	for i, v := range s.count[:] {
   462  		if v == 0 {
   463  			continue
   464  		}
   465  		if v > m {
   466  			m = v
   467  		}
   468  		symlen = uint16(i) + 1
   469  	}
   470  	s.symbolLen = symlen
   471  	return int(m)
   472  }
   473  
   474  // minTableLog provides the minimum logSize to safely represent a distribution.
   475  func (s *Scratch) minTableLog() uint8 {
   476  	minBitsSrc := highBits(uint32(s.br.remain()-1)) + 1
   477  	minBitsSymbols := highBits(uint32(s.symbolLen-1)) + 2
   478  	if minBitsSrc < minBitsSymbols {
   479  		return uint8(minBitsSrc)
   480  	}
   481  	return uint8(minBitsSymbols)
   482  }
   483  
   484  // optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog
   485  func (s *Scratch) optimalTableLog() {
   486  	tableLog := s.TableLog
   487  	minBits := s.minTableLog()
   488  	maxBitsSrc := uint8(highBits(uint32(s.br.remain()-1))) - 2
   489  	if maxBitsSrc < tableLog {
   490  		// Accuracy can be reduced
   491  		tableLog = maxBitsSrc
   492  	}
   493  	if minBits > tableLog {
   494  		tableLog = minBits
   495  	}
   496  	// Need a minimum to safely represent all symbol values
   497  	if tableLog < minTablelog {
   498  		tableLog = minTablelog
   499  	}
   500  	if tableLog > maxTableLog {
   501  		tableLog = maxTableLog
   502  	}
   503  	s.actualTableLog = tableLog
   504  }
   505  
   506  var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000}
   507  
   508  // normalizeCount will normalize the count of the symbols so
   509  // the total is equal to the table size.
   510  func (s *Scratch) normalizeCount() error {
   511  	var (
   512  		tableLog          = s.actualTableLog
   513  		scale             = 62 - uint64(tableLog)
   514  		step              = (1 << 62) / uint64(s.br.remain())
   515  		vStep             = uint64(1) << (scale - 20)
   516  		stillToDistribute = int16(1 << tableLog)
   517  		largest           int
   518  		largestP          int16
   519  		lowThreshold      = (uint32)(s.br.remain() >> tableLog)
   520  	)
   521  
   522  	for i, cnt := range s.count[:s.symbolLen] {
   523  		// already handled
   524  		// if (count[s] == s.length) return 0;   /* rle special case */
   525  
   526  		if cnt == 0 {
   527  			s.norm[i] = 0
   528  			continue
   529  		}
   530  		if cnt <= lowThreshold {
   531  			s.norm[i] = -1
   532  			stillToDistribute--
   533  		} else {
   534  			proba := (int16)((uint64(cnt) * step) >> scale)
   535  			if proba < 8 {
   536  				restToBeat := vStep * uint64(rtbTable[proba])
   537  				v := uint64(cnt)*step - (uint64(proba) << scale)
   538  				if v > restToBeat {
   539  					proba++
   540  				}
   541  			}
   542  			if proba > largestP {
   543  				largestP = proba
   544  				largest = i
   545  			}
   546  			s.norm[i] = proba
   547  			stillToDistribute -= proba
   548  		}
   549  	}
   550  
   551  	if -stillToDistribute >= (s.norm[largest] >> 1) {
   552  		// corner case, need another normalization method
   553  		return s.normalizeCount2()
   554  	}
   555  	s.norm[largest] += stillToDistribute
   556  	return nil
   557  }
   558  
   559  // Secondary normalization method.
   560  // To be used when primary method fails.
   561  func (s *Scratch) normalizeCount2() error {
   562  	const notYetAssigned = -2
   563  	var (
   564  		distributed  uint32
   565  		total        = uint32(s.br.remain())
   566  		tableLog     = s.actualTableLog
   567  		lowThreshold = total >> tableLog
   568  		lowOne       = (total * 3) >> (tableLog + 1)
   569  	)
   570  	for i, cnt := range s.count[:s.symbolLen] {
   571  		if cnt == 0 {
   572  			s.norm[i] = 0
   573  			continue
   574  		}
   575  		if cnt <= lowThreshold {
   576  			s.norm[i] = -1
   577  			distributed++
   578  			total -= cnt
   579  			continue
   580  		}
   581  		if cnt <= lowOne {
   582  			s.norm[i] = 1
   583  			distributed++
   584  			total -= cnt
   585  			continue
   586  		}
   587  		s.norm[i] = notYetAssigned
   588  	}
   589  	toDistribute := (1 << tableLog) - distributed
   590  
   591  	if (total / toDistribute) > lowOne {
   592  		// risk of rounding to zero
   593  		lowOne = (total * 3) / (toDistribute * 2)
   594  		for i, cnt := range s.count[:s.symbolLen] {
   595  			if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) {
   596  				s.norm[i] = 1
   597  				distributed++
   598  				total -= cnt
   599  				continue
   600  			}
   601  		}
   602  		toDistribute = (1 << tableLog) - distributed
   603  	}
   604  	if distributed == uint32(s.symbolLen)+1 {
   605  		// all values are pretty poor;
   606  		//   probably incompressible data (should have already been detected);
   607  		//   find max, then give all remaining points to max
   608  		var maxV int
   609  		var maxC uint32
   610  		for i, cnt := range s.count[:s.symbolLen] {
   611  			if cnt > maxC {
   612  				maxV = i
   613  				maxC = cnt
   614  			}
   615  		}
   616  		s.norm[maxV] += int16(toDistribute)
   617  		return nil
   618  	}
   619  
   620  	if total == 0 {
   621  		// all of the symbols were low enough for the lowOne or lowThreshold
   622  		for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) {
   623  			if s.norm[i] > 0 {
   624  				toDistribute--
   625  				s.norm[i]++
   626  			}
   627  		}
   628  		return nil
   629  	}
   630  
   631  	var (
   632  		vStepLog = 62 - uint64(tableLog)
   633  		mid      = uint64((1 << (vStepLog - 1)) - 1)
   634  		rStep    = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining
   635  		tmpTotal = mid
   636  	)
   637  	for i, cnt := range s.count[:s.symbolLen] {
   638  		if s.norm[i] == notYetAssigned {
   639  			var (
   640  				end    = tmpTotal + uint64(cnt)*rStep
   641  				sStart = uint32(tmpTotal >> vStepLog)
   642  				sEnd   = uint32(end >> vStepLog)
   643  				weight = sEnd - sStart
   644  			)
   645  			if weight < 1 {
   646  				return errors.New("weight < 1")
   647  			}
   648  			s.norm[i] = int16(weight)
   649  			tmpTotal = end
   650  		}
   651  	}
   652  	return nil
   653  }
   654  
   655  // validateNorm validates the normalized histogram table.
   656  func (s *Scratch) validateNorm() (err error) {
   657  	var total int
   658  	for _, v := range s.norm[:s.symbolLen] {
   659  		if v >= 0 {
   660  			total += int(v)
   661  		} else {
   662  			total -= int(v)
   663  		}
   664  	}
   665  	defer func() {
   666  		if err == nil {
   667  			return
   668  		}
   669  		fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen)
   670  		for i, v := range s.norm[:s.symbolLen] {
   671  			fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v)
   672  		}
   673  	}()
   674  	if total != (1 << s.actualTableLog) {
   675  		return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog)
   676  	}
   677  	for i, v := range s.count[s.symbolLen:] {
   678  		if v != 0 {
   679  			return fmt.Errorf("warning: Found symbol out of range, %d after cut", i)
   680  		}
   681  	}
   682  	return nil
   683  }
   684  

View as plain text