...

Source file src/github.com/klauspost/compress/flate/huffman_code.go

Documentation: github.com/klauspost/compress/flate

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package flate
     6  
     7  import (
     8  	"math"
     9  	"math/bits"
    10  )
    11  
    12  const (
    13  	maxBitsLimit = 16
    14  	// number of valid literals
    15  	literalCount = 286
    16  )
    17  
    18  // hcode is a huffman code with a bit code and bit length.
    19  type hcode uint32
    20  
    21  func (h hcode) len() uint8 {
    22  	return uint8(h)
    23  }
    24  
    25  func (h hcode) code64() uint64 {
    26  	return uint64(h >> 8)
    27  }
    28  
    29  func (h hcode) zero() bool {
    30  	return h == 0
    31  }
    32  
    33  type huffmanEncoder struct {
    34  	codes    []hcode
    35  	bitCount [17]int32
    36  
    37  	// Allocate a reusable buffer with the longest possible frequency table.
    38  	// Possible lengths are codegenCodeCount, offsetCodeCount and literalCount.
    39  	// The largest of these is literalCount, so we allocate for that case.
    40  	freqcache [literalCount + 1]literalNode
    41  }
    42  
    43  type literalNode struct {
    44  	literal uint16
    45  	freq    uint16
    46  }
    47  
    48  // A levelInfo describes the state of the constructed tree for a given depth.
    49  type levelInfo struct {
    50  	// Our level.  for better printing
    51  	level int32
    52  
    53  	// The frequency of the last node at this level
    54  	lastFreq int32
    55  
    56  	// The frequency of the next character to add to this level
    57  	nextCharFreq int32
    58  
    59  	// The frequency of the next pair (from level below) to add to this level.
    60  	// Only valid if the "needed" value of the next lower level is 0.
    61  	nextPairFreq int32
    62  
    63  	// The number of chains remaining to generate for this level before moving
    64  	// up to the next level
    65  	needed int32
    66  }
    67  
    68  // set sets the code and length of an hcode.
    69  func (h *hcode) set(code uint16, length uint8) {
    70  	*h = hcode(length) | (hcode(code) << 8)
    71  }
    72  
    73  func newhcode(code uint16, length uint8) hcode {
    74  	return hcode(length) | (hcode(code) << 8)
    75  }
    76  
    77  func reverseBits(number uint16, bitLength byte) uint16 {
    78  	return bits.Reverse16(number << ((16 - bitLength) & 15))
    79  }
    80  
    81  func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxUint16} }
    82  
    83  func newHuffmanEncoder(size int) *huffmanEncoder {
    84  	// Make capacity to next power of two.
    85  	c := uint(bits.Len32(uint32(size - 1)))
    86  	return &huffmanEncoder{codes: make([]hcode, size, 1<<c)}
    87  }
    88  
    89  // Generates a HuffmanCode corresponding to the fixed literal table
    90  func generateFixedLiteralEncoding() *huffmanEncoder {
    91  	h := newHuffmanEncoder(literalCount)
    92  	codes := h.codes
    93  	var ch uint16
    94  	for ch = 0; ch < literalCount; ch++ {
    95  		var bits uint16
    96  		var size uint8
    97  		switch {
    98  		case ch < 144:
    99  			// size 8, 000110000  .. 10111111
   100  			bits = ch + 48
   101  			size = 8
   102  		case ch < 256:
   103  			// size 9, 110010000 .. 111111111
   104  			bits = ch + 400 - 144
   105  			size = 9
   106  		case ch < 280:
   107  			// size 7, 0000000 .. 0010111
   108  			bits = ch - 256
   109  			size = 7
   110  		default:
   111  			// size 8, 11000000 .. 11000111
   112  			bits = ch + 192 - 280
   113  			size = 8
   114  		}
   115  		codes[ch] = newhcode(reverseBits(bits, size), size)
   116  	}
   117  	return h
   118  }
   119  
   120  func generateFixedOffsetEncoding() *huffmanEncoder {
   121  	h := newHuffmanEncoder(30)
   122  	codes := h.codes
   123  	for ch := range codes {
   124  		codes[ch] = newhcode(reverseBits(uint16(ch), 5), 5)
   125  	}
   126  	return h
   127  }
   128  
   129  var fixedLiteralEncoding = generateFixedLiteralEncoding()
   130  var fixedOffsetEncoding = generateFixedOffsetEncoding()
   131  
   132  func (h *huffmanEncoder) bitLength(freq []uint16) int {
   133  	var total int
   134  	for i, f := range freq {
   135  		if f != 0 {
   136  			total += int(f) * int(h.codes[i].len())
   137  		}
   138  	}
   139  	return total
   140  }
   141  
   142  func (h *huffmanEncoder) bitLengthRaw(b []byte) int {
   143  	var total int
   144  	for _, f := range b {
   145  		total += int(h.codes[f].len())
   146  	}
   147  	return total
   148  }
   149  
   150  // canReuseBits returns the number of bits or math.MaxInt32 if the encoder cannot be reused.
   151  func (h *huffmanEncoder) canReuseBits(freq []uint16) int {
   152  	var total int
   153  	for i, f := range freq {
   154  		if f != 0 {
   155  			code := h.codes[i]
   156  			if code.zero() {
   157  				return math.MaxInt32
   158  			}
   159  			total += int(f) * int(code.len())
   160  		}
   161  	}
   162  	return total
   163  }
   164  
   165  // Return the number of literals assigned to each bit size in the Huffman encoding
   166  //
   167  // This method is only called when list.length >= 3
   168  // The cases of 0, 1, and 2 literals are handled by special case code.
   169  //
   170  // list  An array of the literals with non-zero frequencies
   171  //
   172  //	and their associated frequencies. The array is in order of increasing
   173  //	frequency, and has as its last element a special element with frequency
   174  //	MaxInt32
   175  //
   176  // maxBits     The maximum number of bits that should be used to encode any literal.
   177  //
   178  //	Must be less than 16.
   179  //
   180  // return      An integer array in which array[i] indicates the number of literals
   181  //
   182  //	that should be encoded in i bits.
   183  func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
   184  	if maxBits >= maxBitsLimit {
   185  		panic("flate: maxBits too large")
   186  	}
   187  	n := int32(len(list))
   188  	list = list[0 : n+1]
   189  	list[n] = maxNode()
   190  
   191  	// The tree can't have greater depth than n - 1, no matter what. This
   192  	// saves a little bit of work in some small cases
   193  	if maxBits > n-1 {
   194  		maxBits = n - 1
   195  	}
   196  
   197  	// Create information about each of the levels.
   198  	// A bogus "Level 0" whose sole purpose is so that
   199  	// level1.prev.needed==0.  This makes level1.nextPairFreq
   200  	// be a legitimate value that never gets chosen.
   201  	var levels [maxBitsLimit]levelInfo
   202  	// leafCounts[i] counts the number of literals at the left
   203  	// of ancestors of the rightmost node at level i.
   204  	// leafCounts[i][j] is the number of literals at the left
   205  	// of the level j ancestor.
   206  	var leafCounts [maxBitsLimit][maxBitsLimit]int32
   207  
   208  	// Descending to only have 1 bounds check.
   209  	l2f := int32(list[2].freq)
   210  	l1f := int32(list[1].freq)
   211  	l0f := int32(list[0].freq) + int32(list[1].freq)
   212  
   213  	for level := int32(1); level <= maxBits; level++ {
   214  		// For every level, the first two items are the first two characters.
   215  		// We initialize the levels as if we had already figured this out.
   216  		levels[level] = levelInfo{
   217  			level:        level,
   218  			lastFreq:     l1f,
   219  			nextCharFreq: l2f,
   220  			nextPairFreq: l0f,
   221  		}
   222  		leafCounts[level][level] = 2
   223  		if level == 1 {
   224  			levels[level].nextPairFreq = math.MaxInt32
   225  		}
   226  	}
   227  
   228  	// We need a total of 2*n - 2 items at top level and have already generated 2.
   229  	levels[maxBits].needed = 2*n - 4
   230  
   231  	level := uint32(maxBits)
   232  	for level < 16 {
   233  		l := &levels[level]
   234  		if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
   235  			// We've run out of both leafs and pairs.
   236  			// End all calculations for this level.
   237  			// To make sure we never come back to this level or any lower level,
   238  			// set nextPairFreq impossibly large.
   239  			l.needed = 0
   240  			levels[level+1].nextPairFreq = math.MaxInt32
   241  			level++
   242  			continue
   243  		}
   244  
   245  		prevFreq := l.lastFreq
   246  		if l.nextCharFreq < l.nextPairFreq {
   247  			// The next item on this row is a leaf node.
   248  			n := leafCounts[level][level] + 1
   249  			l.lastFreq = l.nextCharFreq
   250  			// Lower leafCounts are the same of the previous node.
   251  			leafCounts[level][level] = n
   252  			e := list[n]
   253  			if e.literal < math.MaxUint16 {
   254  				l.nextCharFreq = int32(e.freq)
   255  			} else {
   256  				l.nextCharFreq = math.MaxInt32
   257  			}
   258  		} else {
   259  			// The next item on this row is a pair from the previous row.
   260  			// nextPairFreq isn't valid until we generate two
   261  			// more values in the level below
   262  			l.lastFreq = l.nextPairFreq
   263  			// Take leaf counts from the lower level, except counts[level] remains the same.
   264  			if true {
   265  				save := leafCounts[level][level]
   266  				leafCounts[level] = leafCounts[level-1]
   267  				leafCounts[level][level] = save
   268  			} else {
   269  				copy(leafCounts[level][:level], leafCounts[level-1][:level])
   270  			}
   271  			levels[l.level-1].needed = 2
   272  		}
   273  
   274  		if l.needed--; l.needed == 0 {
   275  			// We've done everything we need to do for this level.
   276  			// Continue calculating one level up. Fill in nextPairFreq
   277  			// of that level with the sum of the two nodes we've just calculated on
   278  			// this level.
   279  			if l.level == maxBits {
   280  				// All done!
   281  				break
   282  			}
   283  			levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
   284  			level++
   285  		} else {
   286  			// If we stole from below, move down temporarily to replenish it.
   287  			for levels[level-1].needed > 0 {
   288  				level--
   289  			}
   290  		}
   291  	}
   292  
   293  	// Somethings is wrong if at the end, the top level is null or hasn't used
   294  	// all of the leaves.
   295  	if leafCounts[maxBits][maxBits] != n {
   296  		panic("leafCounts[maxBits][maxBits] != n")
   297  	}
   298  
   299  	bitCount := h.bitCount[:maxBits+1]
   300  	bits := 1
   301  	counts := &leafCounts[maxBits]
   302  	for level := maxBits; level > 0; level-- {
   303  		// chain.leafCount gives the number of literals requiring at least "bits"
   304  		// bits to encode.
   305  		bitCount[bits] = counts[level] - counts[level-1]
   306  		bits++
   307  	}
   308  	return bitCount
   309  }
   310  
   311  // Look at the leaves and assign them a bit count and an encoding as specified
   312  // in RFC 1951 3.2.2
   313  func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
   314  	code := uint16(0)
   315  	for n, bits := range bitCount {
   316  		code <<= 1
   317  		if n == 0 || bits == 0 {
   318  			continue
   319  		}
   320  		// The literals list[len(list)-bits] .. list[len(list)-bits]
   321  		// are encoded using "bits" bits, and get the values
   322  		// code, code + 1, ....  The code values are
   323  		// assigned in literal order (not frequency order).
   324  		chunk := list[len(list)-int(bits):]
   325  
   326  		sortByLiteral(chunk)
   327  		for _, node := range chunk {
   328  			h.codes[node.literal] = newhcode(reverseBits(code, uint8(n)), uint8(n))
   329  			code++
   330  		}
   331  		list = list[0 : len(list)-int(bits)]
   332  	}
   333  }
   334  
   335  // Update this Huffman Code object to be the minimum code for the specified frequency count.
   336  //
   337  // freq  An array of frequencies, in which frequency[i] gives the frequency of literal i.
   338  // maxBits  The maximum number of bits to use for any literal.
   339  func (h *huffmanEncoder) generate(freq []uint16, maxBits int32) {
   340  	list := h.freqcache[:len(freq)+1]
   341  	codes := h.codes[:len(freq)]
   342  	// Number of non-zero literals
   343  	count := 0
   344  	// Set list to be the set of all non-zero literals and their frequencies
   345  	for i, f := range freq {
   346  		if f != 0 {
   347  			list[count] = literalNode{uint16(i), f}
   348  			count++
   349  		} else {
   350  			codes[i] = 0
   351  		}
   352  	}
   353  	list[count] = literalNode{}
   354  
   355  	list = list[:count]
   356  	if count <= 2 {
   357  		// Handle the small cases here, because they are awkward for the general case code. With
   358  		// two or fewer literals, everything has bit length 1.
   359  		for i, node := range list {
   360  			// "list" is in order of increasing literal value.
   361  			h.codes[node.literal].set(uint16(i), 1)
   362  		}
   363  		return
   364  	}
   365  	sortByFreq(list)
   366  
   367  	// Get the number of literals for each bit count
   368  	bitCount := h.bitCounts(list, maxBits)
   369  	// And do the assignment
   370  	h.assignEncodingAndSize(bitCount, list)
   371  }
   372  
   373  // atLeastOne clamps the result between 1 and 15.
   374  func atLeastOne(v float32) float32 {
   375  	if v < 1 {
   376  		return 1
   377  	}
   378  	if v > 15 {
   379  		return 15
   380  	}
   381  	return v
   382  }
   383  
   384  func histogram(b []byte, h []uint16) {
   385  	if true && len(b) >= 8<<10 {
   386  		// Split for bigger inputs
   387  		histogramSplit(b, h)
   388  	} else {
   389  		h = h[:256]
   390  		for _, t := range b {
   391  			h[t]++
   392  		}
   393  	}
   394  }
   395  
   396  func histogramSplit(b []byte, h []uint16) {
   397  	// Tested, and slightly faster than 2-way.
   398  	// Writing to separate arrays and combining is also slightly slower.
   399  	h = h[:256]
   400  	for len(b)&3 != 0 {
   401  		h[b[0]]++
   402  		b = b[1:]
   403  	}
   404  	n := len(b) / 4
   405  	x, y, z, w := b[:n], b[n:], b[n+n:], b[n+n+n:]
   406  	y, z, w = y[:len(x)], z[:len(x)], w[:len(x)]
   407  	for i, t := range x {
   408  		v0 := &h[t]
   409  		v1 := &h[y[i]]
   410  		v3 := &h[w[i]]
   411  		v2 := &h[z[i]]
   412  		*v0++
   413  		*v1++
   414  		*v2++
   415  		*v3++
   416  	}
   417  }
   418  

View as plain text