...

Text file src/github.com/google/flatbuffers/tests/parser_test.cpp

Documentation: github.com/google/flatbuffers/tests

     1#include "parser_test.h"
     2
     3#include <cmath>
     4#include <limits>
     5#include <string>
     6
     7#include "flatbuffers/idl.h"
     8#include "test_assert.h"
     9
    10namespace flatbuffers {
    11namespace tests {
    12namespace {
    13
    14// Shortcuts for the infinity.
    15static const auto infinity_f = std::numeric_limits<float>::infinity();
    16static const auto infinity_d = std::numeric_limits<double>::infinity();
    17
    18// Test that parser errors are actually generated.
    19static void TestError_(const char *src, const char *error_substr,
    20                       bool strict_json, const char *file, int line,
    21                       const char *func) {
    22  flatbuffers::IDLOptions opts;
    23  opts.strict_json = strict_json;
    24  flatbuffers::Parser parser(opts);
    25  if (parser.Parse(src)) {
    26    TestFail("true", "false",
    27             ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
    28             func);
    29  } else if (!strstr(parser.error_.c_str(), error_substr)) {
    30    TestFail(error_substr, parser.error_.c_str(),
    31             ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
    32             func);
    33  }
    34}
    35
    36static void TestError_(const char *src, const char *error_substr,
    37                       const char *file, int line, const char *func) {
    38  TestError_(src, error_substr, false, file, line, func);
    39}
    40
    41#ifdef _WIN32
    42#  define TestError(src, ...) \
    43    TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__)
    44#else
    45#  define TestError(src, ...) \
    46    TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__)
    47#endif
    48
    49static bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; }
    50
    51}  // namespace
    52
    53// Test that parsing errors occur as we'd expect.
    54// Also useful for coverage, making sure these paths are run.
    55void ErrorTest() {
    56  // In order they appear in idl_parser.cpp
    57  TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit");
    58  TestError("\"\0", "illegal");
    59  TestError("\"\\q", "escape code");
    60  TestError("table ///", "documentation");
    61  TestError("@", "illegal");
    62  TestError("table 1", "expecting");
    63  TestError("table X { Y:[[int]]; }", "nested vector");
    64  TestError("table X { Y:1; }", "illegal type");
    65  TestError("table X { Y:int; Y:int; }", "field already");
    66  TestError("table Y {} table X { Y:int; }", "same as table");
    67  TestError("struct X { Y:string; }", "only scalar");
    68  TestError("struct X { a:uint = 42; }", "default values");
    69  TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum");
    70  TestError("struct X { Y:int (deprecated); }", "deprecate");
    71  TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }",
    72            "missing type field");
    73  TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {",
    74            "type id");
    75  TestError("table X { Y:int; } root_type X; { Z:", "unknown field");
    76  TestError("table X { Y:int; } root_type X; { Y:", "string constant", true);
    77  TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant",
    78            true);
    79  TestError(
    80      "struct X { Y:int; Z:int; } table W { V:X; } root_type W; "
    81      "{ V:{ Y:1 } }",
    82      "wrong number");
    83  TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }",
    84            "unknown enum value");
    85  TestError("table X { Y:byte; } root_type X; { Y:; }", "starting");
    86  TestError("enum X:byte { Y } enum X {", "enum already");
    87  TestError("enum X:float {}", "underlying");
    88  TestError("enum X:byte { Y, Y }", "value already");
    89  TestError("enum X:byte { Y=2, Z=2 }", "unique");
    90  TestError("enum X:byte (force_align: 4) { Y }", "force_align");
    91  TestError("table X { Y:int; } table X {", "datatype already");
    92  TestError("table X { } union X { }", "datatype already");
    93  TestError("union X { } table X { }", "datatype already");
    94  TestError("namespace A; table X { } namespace A; union X { }",
    95            "datatype already");
    96  TestError("namespace A; union X { } namespace A; table X { }",
    97            "datatype already");
    98  TestError("struct X (force_align: 7) { Y:int; }", "force_align");
    99  TestError("struct X {}", "size 0");
   100  TestError("{}", "no root");
   101  TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file");
   102  TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }",
   103            "end of file");
   104  TestError("root_type X;", "unknown root");
   105  TestError("struct X { Y:int; } root_type X;", "a table");
   106  TestError("union X { Y }", "referenced");
   107  TestError("union Z { X } struct X { Y:int; }", "only tables");
   108  TestError("table X { Y:[int]; YLength:int; }", "clash");
   109  TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once");
   110  // float to integer conversion is forbidden
   111  TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float");
   112  TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float");
   113  TestError("enum X:bool { Y = true }", "must be integral");
   114  // Array of non-scalar
   115  TestError("table X { x:int; } struct Y { y:[X:2]; }",
   116            "may contain only scalar or struct fields");
   117  // Non-snake case field names
   118  TestError("table X { Y: int; } root_type Y: {Y:1.0}", "snake_case");
   119  // Complex defaults
   120  TestError("table X { y: string = 1; }", "expecting: string");
   121  TestError("table X { y: string = []; }", " Cannot assign token");
   122  TestError("table X { y: [int] = [1]; }", "Expected `]`");
   123  TestError("table X { y: [int] = [; }", "Expected `]`");
   124  TestError("table X { y: [int] = \"\"; }", "type mismatch");
   125  // An identifier can't start from sign (+|-)
   126  TestError("table X { -Y: int; } root_type Y: {Y:1.0}", "identifier");
   127  TestError("table X { +Y: int; } root_type Y: {Y:1.0}", "identifier");
   128
   129  // Offset64
   130  TestError("table X { a:int (vector64); }", "`vector64` attribute");
   131  TestError("table X { a:int (offset64); }", "`offset64` attribute");
   132  TestError("table X { a:string (vector64); }", "`vector64` attribute");
   133  TestError("table y { a:int; } table X { a:y (offset64); }",
   134            "`offset64` attribute");
   135  TestError("struct y { a:int; } table X { a:y (offset64); }",
   136            "`offset64` attribute");
   137  TestError("table y { a:int; } table X { a:y (vector64); }",
   138            "`vector64` attribute");
   139  TestError("union Y { } table X { ys:Y (offset64); }", "`offset64` attribute");
   140
   141  TestError("table Y { a:int; } table X { ys:[Y] (offset64); }",
   142            "only vectors of scalars are allowed to be 64-bit.");
   143  TestError("table Y { a:int; } table X { ys:[Y] (vector64); }",
   144            "only vectors of scalars are allowed to be 64-bit.");
   145  TestError("union Y { } table X { ys:[Y] (vector64); }",
   146            "only vectors of scalars are allowed to be 64-bit.");
   147
   148  // TOOD(derekbailey): the following three could be allowed once the code gen
   149  // supports the output.
   150  TestError("table X { y:[string] (offset64); }",
   151            "only vectors of scalars are allowed to be 64-bit.");
   152  TestError("table X { y:[string] (vector64); }",
   153            "only vectors of scalars are allowed to be 64-bit.");
   154  TestError("enum X:byte {Z} table X { y:[X] (offset64); }",
   155            "only vectors of scalars are allowed to be 64-bit.");
   156}
   157
   158void EnumOutOfRangeTest() {
   159  TestError("enum X:byte { Y = 128 }", "enum value does not fit");
   160  TestError("enum X:byte { Y = -129 }", "enum value does not fit");
   161  TestError("enum X:byte { Y = 126, Z0, Z1 }", "enum value does not fit");
   162  TestError("enum X:ubyte { Y = -1 }", "enum value does not fit");
   163  TestError("enum X:ubyte { Y = 256 }", "enum value does not fit");
   164  TestError("enum X:ubyte { Y = 255, Z }", "enum value does not fit");
   165  TestError("table Y{} union X { Y = -1 }", "enum value does not fit");
   166  TestError("table Y{} union X { Y = 256 }", "enum value does not fit");
   167  TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit");
   168  TestError("enum X:int { Y = -2147483649 }", "enum value does not fit");
   169  TestError("enum X:int { Y = 2147483648 }", "enum value does not fit");
   170  TestError("enum X:uint { Y = -1 }", "enum value does not fit");
   171  TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit");
   172  TestError("enum X:long { Y = 9223372036854775808 }", "does not fit");
   173  TestError("enum X:long { Y = 9223372036854775807, Z }",
   174            "enum value does not fit");
   175  TestError("enum X:ulong { Y = -1 }", "does not fit");
   176  TestError("enum X:ubyte (bit_flags) { Y=8 }", "bit flag out");
   177  TestError("enum X:byte (bit_flags) { Y=7 }", "must be unsigned");  // -128
   178  // bit_flgs out of range
   179  TestError("enum X:ubyte (bit_flags) { Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8 }",
   180            "out of range");
   181}
   182
   183void IntegerOutOfRangeTest() {
   184  TestError("table T { F:byte; } root_type T; { F:128 }",
   185            "constant does not fit");
   186  TestError("table T { F:byte; } root_type T; { F:-129 }",
   187            "constant does not fit");
   188  TestError("table T { F:ubyte; } root_type T; { F:256 }",
   189            "constant does not fit");
   190  TestError("table T { F:ubyte; } root_type T; { F:-1 }",
   191            "constant does not fit");
   192  TestError("table T { F:short; } root_type T; { F:32768 }",
   193            "constant does not fit");
   194  TestError("table T { F:short; } root_type T; { F:-32769 }",
   195            "constant does not fit");
   196  TestError("table T { F:ushort; } root_type T; { F:65536 }",
   197            "constant does not fit");
   198  TestError("table T { F:ushort; } root_type T; { F:-1 }",
   199            "constant does not fit");
   200  TestError("table T { F:int; } root_type T; { F:2147483648 }",
   201            "constant does not fit");
   202  TestError("table T { F:int; } root_type T; { F:-2147483649 }",
   203            "constant does not fit");
   204  TestError("table T { F:uint; } root_type T; { F:4294967296 }",
   205            "constant does not fit");
   206  TestError("table T { F:uint; } root_type T; { F:-1 }",
   207            "constant does not fit");
   208  // Check fixed width aliases
   209  TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit");
   210  TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit");
   211  TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit");
   212  TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit");
   213  TestError("table X { Y:uint32; } root_type X; { Y: -1 }", "");
   214  TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }",
   215            "does not fit");
   216  TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
   217  TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }",
   218            "does not fit");
   219  TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }",
   220            "does not fit");
   221
   222  TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit");
   223  TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit");
   224  TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit");
   225  TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit");
   226  TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", "");
   227  TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }",
   228            "does not fit");
   229  TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }",
   230            "does not fit");
   231  TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }",
   232            "does not fit");
   233  // check out-of-int64 as int8
   234  TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }",
   235            "does not fit");
   236  TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }",
   237            "does not fit");
   238
   239  // Check default values
   240  TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}",
   241            "does not fit");
   242  TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}",
   243            "does not fit");
   244  TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
   245  TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}",
   246            "does not fit");
   247  TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}",
   248            "does not fit");
   249}
   250
   251void InvalidFloatTest() {
   252  auto invalid_msg = "invalid number";
   253  auto comma_msg = "expecting: ,";
   254  TestError("table T { F:float; } root_type T; { F:1,0 }", "");
   255  TestError("table T { F:float; } root_type T; { F:. }", "");
   256  TestError("table T { F:float; } root_type T; { F:- }", invalid_msg);
   257  TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg);
   258  TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg);
   259  TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg);
   260  TestError("table T { F:float; } root_type T; { F:.e }", "");
   261  TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg);
   262  TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg);
   263  TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg);
   264  TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg);
   265  TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg);
   266  TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg);
   267  TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg);
   268  TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg);
   269  // exponent pP is mandatory for hex-float
   270  TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg);
   271  TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg);
   272  TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg);
   273  TestError("table T { F:float; } root_type T; { F:0Xe }", invalid_msg);
   274  TestError("table T { F:float; } root_type T; { F:\"0Xe\" }", invalid_msg);
   275  TestError("table T { F:float; } root_type T; { F:\"nan(1)\" }", invalid_msg);
   276  // eE not exponent in hex-float!
   277  TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
   278  TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
   279  TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg);
   280  TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg);
   281  TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg);
   282  TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg);
   283  TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
   284  TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
   285  TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg);
   286  TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg);
   287  TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg);
   288  TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg);
   289  TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg);
   290  TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg);
   291  TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg);
   292  TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg);
   293  TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg);
   294  TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg);
   295  TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg);
   296  TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg);
   297  TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg);
   298  TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg);
   299  TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg);
   300  TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg);
   301  // floats in string
   302  TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg);
   303  TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg);
   304  TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg);
   305  TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg);
   306  TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg);
   307  TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg);
   308  // disable escapes for "number-in-string"
   309  TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid");
   310  TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid");
   311  TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid");
   312  TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid");
   313  TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid");
   314  TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg);
   315  // null is not a number constant!
   316  TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg);
   317  TestError("table T { F:float; } root_type T; { F:null }", invalid_msg);
   318}
   319
   320void UnicodeInvalidSurrogatesTest() {
   321  TestError(
   322      "table T { F:string; }"
   323      "root_type T;"
   324      "{ F:\"\\uD800\"}",
   325      "unpaired high surrogate");
   326  TestError(
   327      "table T { F:string; }"
   328      "root_type T;"
   329      "{ F:\"\\uD800abcd\"}",
   330      "unpaired high surrogate");
   331  TestError(
   332      "table T { F:string; }"
   333      "root_type T;"
   334      "{ F:\"\\uD800\\n\"}",
   335      "unpaired high surrogate");
   336  TestError(
   337      "table T { F:string; }"
   338      "root_type T;"
   339      "{ F:\"\\uD800\\uD800\"}",
   340      "multiple high surrogates");
   341  TestError(
   342      "table T { F:string; }"
   343      "root_type T;"
   344      "{ F:\"\\uDC00\"}",
   345      "unpaired low surrogate");
   346}
   347
   348void InvalidUTF8Test() {
   349  // "1 byte" pattern, under min length of 2 bytes
   350  TestError(
   351      "table T { F:string; }"
   352      "root_type T;"
   353      "{ F:\"\x80\"}",
   354      "illegal UTF-8 sequence");
   355  // 2 byte pattern, string too short
   356  TestError(
   357      "table T { F:string; }"
   358      "root_type T;"
   359      "{ F:\"\xDF\"}",
   360      "illegal UTF-8 sequence");
   361  // 3 byte pattern, string too short
   362  TestError(
   363      "table T { F:string; }"
   364      "root_type T;"
   365      "{ F:\"\xEF\xBF\"}",
   366      "illegal UTF-8 sequence");
   367  // 4 byte pattern, string too short
   368  TestError(
   369      "table T { F:string; }"
   370      "root_type T;"
   371      "{ F:\"\xF7\xBF\xBF\"}",
   372      "illegal UTF-8 sequence");
   373  // "5 byte" pattern, string too short
   374  TestError(
   375      "table T { F:string; }"
   376      "root_type T;"
   377      "{ F:\"\xFB\xBF\xBF\xBF\"}",
   378      "illegal UTF-8 sequence");
   379  // "6 byte" pattern, string too short
   380  TestError(
   381      "table T { F:string; }"
   382      "root_type T;"
   383      "{ F:\"\xFD\xBF\xBF\xBF\xBF\"}",
   384      "illegal UTF-8 sequence");
   385  // "7 byte" pattern, string too short
   386  TestError(
   387      "table T { F:string; }"
   388      "root_type T;"
   389      "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}",
   390      "illegal UTF-8 sequence");
   391  // "5 byte" pattern, over max length of 4 bytes
   392  TestError(
   393      "table T { F:string; }"
   394      "root_type T;"
   395      "{ F:\"\xFB\xBF\xBF\xBF\xBF\"}",
   396      "illegal UTF-8 sequence");
   397  // "6 byte" pattern, over max length of 4 bytes
   398  TestError(
   399      "table T { F:string; }"
   400      "root_type T;"
   401      "{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}",
   402      "illegal UTF-8 sequence");
   403  // "7 byte" pattern, over max length of 4 bytes
   404  TestError(
   405      "table T { F:string; }"
   406      "root_type T;"
   407      "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}",
   408      "illegal UTF-8 sequence");
   409
   410  // Three invalid encodings for U+000A (\n, aka NEWLINE)
   411  TestError(
   412      "table T { F:string; }"
   413      "root_type T;"
   414      "{ F:\"\xC0\x8A\"}",
   415      "illegal UTF-8 sequence");
   416  TestError(
   417      "table T { F:string; }"
   418      "root_type T;"
   419      "{ F:\"\xE0\x80\x8A\"}",
   420      "illegal UTF-8 sequence");
   421  TestError(
   422      "table T { F:string; }"
   423      "root_type T;"
   424      "{ F:\"\xF0\x80\x80\x8A\"}",
   425      "illegal UTF-8 sequence");
   426
   427  // Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL)
   428  TestError(
   429      "table T { F:string; }"
   430      "root_type T;"
   431      "{ F:\"\xE0\x81\xA9\"}",
   432      "illegal UTF-8 sequence");
   433  TestError(
   434      "table T { F:string; }"
   435      "root_type T;"
   436      "{ F:\"\xF0\x80\x81\xA9\"}",
   437      "illegal UTF-8 sequence");
   438
   439  // Invalid encoding for U+20AC (EURO SYMBOL)
   440  TestError(
   441      "table T { F:string; }"
   442      "root_type T;"
   443      "{ F:\"\xF0\x82\x82\xAC\"}",
   444      "illegal UTF-8 sequence");
   445
   446  // UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in
   447  // UTF-8
   448  TestError(
   449      "table T { F:string; }"
   450      "root_type T;"
   451      // U+10400 "encoded" as U+D801 U+DC00
   452      "{ F:\"\xED\xA0\x81\xED\xB0\x80\"}",
   453      "illegal UTF-8 sequence");
   454
   455  // Check independence of identifier from locale.
   456  std::string locale_ident;
   457  locale_ident += "table T { F";
   458  locale_ident += static_cast<char>(-32);  // unsigned 0xE0
   459  locale_ident += " :string; }";
   460  locale_ident += "root_type T;";
   461  locale_ident += "{}";
   462  TestError(locale_ident.c_str(), "");
   463}
   464
   465template<typename T>
   466T TestValue(const char *json, const char *type_name,
   467            const char *decls = nullptr) {
   468  flatbuffers::Parser parser;
   469  parser.builder_.ForceDefaults(true);  // return defaults
   470  auto check_default = json ? false : true;
   471  if (check_default) { parser.opts.output_default_scalars_in_json = true; }
   472  // Simple schema.
   473  std::string schema = std::string(decls ? decls : "") + "\n" +
   474                       "table X { y:" + std::string(type_name) +
   475                       "; } root_type X;";
   476  auto schema_done = parser.Parse(schema.c_str());
   477  TEST_EQ_STR(parser.error_.c_str(), "");
   478  TEST_EQ(schema_done, true);
   479
   480  auto done = parser.Parse(check_default ? "{}" : json);
   481  TEST_EQ_STR(parser.error_.c_str(), "");
   482  TEST_EQ(done, true);
   483
   484  // Check with print.
   485  std::string print_back;
   486  parser.opts.indent_step = -1;
   487  TEST_NULL(GenText(parser, parser.builder_.GetBufferPointer(), &print_back));
   488  // restore value from its default
   489  if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); }
   490
   491  auto root = flatbuffers::GetRoot<flatbuffers::Table>(
   492      parser.builder_.GetBufferPointer());
   493  return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0);
   494}
   495
   496// Additional parser testing not covered elsewhere.
   497void ValueTest() {
   498  // Test scientific notation numbers.
   499  TEST_EQ(
   500      FloatCompare(TestValue<float>("{ y:0.0314159e+2 }", "float"), 3.14159f),
   501      true);
   502  // number in string
   503  TEST_EQ(FloatCompare(TestValue<float>("{ y:\"0.0314159e+2\" }", "float"),
   504                       3.14159f),
   505          true);
   506
   507  // Test conversion functions.
   508  TEST_EQ(FloatCompare(TestValue<float>("{ y:cos(rad(180)) }", "float"), -1),
   509          true);
   510
   511  // int embedded to string
   512  TEST_EQ(TestValue<int>("{ y:\"-876\" }", "int=-123"), -876);
   513  TEST_EQ(TestValue<int>("{ y:\"876\" }", "int=-123"), 876);
   514
   515  // Test negative hex constant.
   516  TEST_EQ(TestValue<int>("{ y:-0x8ea0 }", "int=-0x8ea0"), -36512);
   517  TEST_EQ(TestValue<int>(nullptr, "int=-0x8ea0"), -36512);
   518
   519  // positive hex constant
   520  TEST_EQ(TestValue<int>("{ y:0x1abcdef }", "int=0x1"), 0x1abcdef);
   521  // with optional '+' sign
   522  TEST_EQ(TestValue<int>("{ y:+0x1abcdef }", "int=+0x1"), 0x1abcdef);
   523  // hex in string
   524  TEST_EQ(TestValue<int>("{ y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef);
   525
   526  // Make sure we do unsigned 64bit correctly.
   527  TEST_EQ(TestValue<uint64_t>("{ y:12335089644688340133 }", "ulong"),
   528          12335089644688340133ULL);
   529
   530  // bool in string
   531  TEST_EQ(TestValue<bool>("{ y:\"false\" }", "bool=true"), false);
   532  TEST_EQ(TestValue<bool>("{ y:\"true\" }", "bool=\"true\""), true);
   533  TEST_EQ(TestValue<bool>("{ y:'false' }", "bool=true"), false);
   534  TEST_EQ(TestValue<bool>("{ y:'true' }", "bool=\"true\""), true);
   535
   536  // check comments before and after json object
   537  TEST_EQ(TestValue<int>("/*before*/ { y:1 } /*after*/", "int"), 1);
   538  TEST_EQ(TestValue<int>("//before \n { y:1 } //after", "int"), 1);
   539}
   540
   541void NestedListTest() {
   542  flatbuffers::Parser parser1;
   543  TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }"
   544                        "root_type T;"
   545                        "{ F:[ [10,20], [30,40]] }"),
   546          true);
   547}
   548
   549void EnumStringsTest() {
   550  flatbuffers::Parser parser1;
   551  TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }"
   552                        "root_type T;"
   553                        "{ F:[ A, B, \"C\", \"A B C\" ] }"),
   554          true);
   555  flatbuffers::Parser parser2;
   556  TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }"
   557                        "root_type T;"
   558                        "{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"),
   559          true);
   560  // unsigned bit_flags
   561  flatbuffers::Parser parser3;
   562  TEST_EQ(
   563      parser3.Parse("enum E:uint16 (bit_flags) { F0, F07=7, F08, F14=14, F15 }"
   564                    " table T { F: E = \"F15 F08\"; }"
   565                    "root_type T;"),
   566      true);
   567}
   568
   569void EnumValueTest() {
   570  // json: "{ Y:0 }", schema: table X { y: "E"}
   571  // 0 in enum (V=0) E then Y=0 is valid.
   572  TEST_EQ(TestValue<int>("{ y:0 }", "E", "enum E:int { V }"), 0);
   573  TEST_EQ(TestValue<int>("{ y:V }", "E", "enum E:int { V }"), 0);
   574  // A default value of Y is 0.
   575  TEST_EQ(TestValue<int>("{ }", "E", "enum E:int { V }"), 0);
   576  TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { V=5 }"), 5);
   577  // Generate json with defaults and check.
   578  TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { V=5 }"), 5);
   579  // 5 in enum
   580  TEST_EQ(TestValue<int>("{ y:5 }", "E", "enum E:int { Z, V=5 }"), 5);
   581  TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { Z, V=5 }"), 5);
   582  // Generate json with defaults and check.
   583  TEST_EQ(TestValue<int>(nullptr, "E", "enum E:int { Z, V=5 }"), 0);
   584  TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { Z, V=5 }"), 5);
   585  // u84 test
   586  TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
   587                              "enum E:ulong { V = 13835058055282163712 }"),
   588          13835058055282163712ULL);
   589  TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
   590                              "enum E:ulong { V = 18446744073709551615 }"),
   591          18446744073709551615ULL);
   592  // Assign non-enum value to enum field. Is it right?
   593  TEST_EQ(TestValue<int>("{ y:7 }", "E", "enum E:int { V = 0 }"), 7);
   594  // Check that non-ascending values are valid.
   595  TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { Z=10, V=5 }"), 5);
   596}
   597
   598void IntegerBoundaryTest() {
   599  // Check numerical compatibility with non-C++ languages.
   600  // By the C++ standard, std::numerical_limits<int64_t>::min() ==
   601  // -9223372036854775807 (-2^63+1) or less* The Flatbuffers grammar and most of
   602  // the languages (C#, Java, Rust) expect that minimum values are: -128,
   603  // -32768,.., -9223372036854775808. Since C++20,
   604  // static_cast<int64>(0x8000000000000000ULL) is well-defined two's complement
   605  // cast. Therefore -9223372036854775808 should be valid negative value.
   606  TEST_EQ(flatbuffers::numeric_limits<int8_t>::min(), -128);
   607  TEST_EQ(flatbuffers::numeric_limits<int8_t>::max(), 127);
   608  TEST_EQ(flatbuffers::numeric_limits<int16_t>::min(), -32768);
   609  TEST_EQ(flatbuffers::numeric_limits<int16_t>::max(), 32767);
   610  TEST_EQ(flatbuffers::numeric_limits<int32_t>::min() + 1, -2147483647);
   611  TEST_EQ(flatbuffers::numeric_limits<int32_t>::max(), 2147483647ULL);
   612  TEST_EQ(flatbuffers::numeric_limits<int64_t>::min() + 1LL,
   613          -9223372036854775807LL);
   614  TEST_EQ(flatbuffers::numeric_limits<int64_t>::max(), 9223372036854775807ULL);
   615  TEST_EQ(flatbuffers::numeric_limits<uint8_t>::max(), 255);
   616  TEST_EQ(flatbuffers::numeric_limits<uint16_t>::max(), 65535);
   617  TEST_EQ(flatbuffers::numeric_limits<uint32_t>::max(), 4294967295ULL);
   618  TEST_EQ(flatbuffers::numeric_limits<uint64_t>::max(),
   619          18446744073709551615ULL);
   620
   621  TEST_EQ(TestValue<int8_t>("{ y:127 }", "byte"), 127);
   622  TEST_EQ(TestValue<int8_t>("{ y:-128 }", "byte"), -128);
   623  TEST_EQ(TestValue<uint8_t>("{ y:255 }", "ubyte"), 255);
   624  TEST_EQ(TestValue<uint8_t>("{ y:0 }", "ubyte"), 0);
   625  TEST_EQ(TestValue<int16_t>("{ y:32767 }", "short"), 32767);
   626  TEST_EQ(TestValue<int16_t>("{ y:-32768 }", "short"), -32768);
   627  TEST_EQ(TestValue<uint16_t>("{ y:65535 }", "ushort"), 65535);
   628  TEST_EQ(TestValue<uint16_t>("{ y:0 }", "ushort"), 0);
   629  TEST_EQ(TestValue<int32_t>("{ y:2147483647 }", "int"), 2147483647);
   630  TEST_EQ(TestValue<int32_t>("{ y:-2147483648 }", "int") + 1, -2147483647);
   631  TEST_EQ(TestValue<uint32_t>("{ y:4294967295 }", "uint"), 4294967295);
   632  TEST_EQ(TestValue<uint32_t>("{ y:0 }", "uint"), 0);
   633  TEST_EQ(TestValue<int64_t>("{ y:9223372036854775807 }", "long"),
   634          9223372036854775807LL);
   635  TEST_EQ(TestValue<int64_t>("{ y:-9223372036854775808 }", "long") + 1LL,
   636          -9223372036854775807LL);
   637  TEST_EQ(TestValue<uint64_t>("{ y:18446744073709551615 }", "ulong"),
   638          18446744073709551615ULL);
   639  TEST_EQ(TestValue<uint64_t>("{ y:0 }", "ulong"), 0);
   640  TEST_EQ(TestValue<uint64_t>("{ y: 18446744073709551615 }", "uint64"),
   641          18446744073709551615ULL);
   642  // check that the default works
   643  TEST_EQ(TestValue<uint64_t>(nullptr, "uint64 = 18446744073709551615"),
   644          18446744073709551615ULL);
   645}
   646
   647void ValidFloatTest() {
   648  // check rounding to infinity
   649  TEST_EQ(TestValue<float>("{ y:+3.4029e+38 }", "float"), +infinity_f);
   650  TEST_EQ(TestValue<float>("{ y:-3.4029e+38 }", "float"), -infinity_f);
   651  TEST_EQ(TestValue<double>("{ y:+1.7977e+308 }", "double"), +infinity_d);
   652  TEST_EQ(TestValue<double>("{ y:-1.7977e+308 }", "double"), -infinity_d);
   653
   654  TEST_EQ(
   655      FloatCompare(TestValue<float>("{ y:0.0314159e+2 }", "float"), 3.14159f),
   656      true);
   657  // float in string
   658  TEST_EQ(FloatCompare(TestValue<float>("{ y:\" 0.0314159e+2  \" }", "float"),
   659                       3.14159f),
   660          true);
   661
   662  TEST_EQ(TestValue<float>("{ y:1 }", "float"), 1.0f);
   663  TEST_EQ(TestValue<float>("{ y:1.0 }", "float"), 1.0f);
   664  TEST_EQ(TestValue<float>("{ y:1. }", "float"), 1.0f);
   665  TEST_EQ(TestValue<float>("{ y:+1. }", "float"), 1.0f);
   666  TEST_EQ(TestValue<float>("{ y:-1. }", "float"), -1.0f);
   667  TEST_EQ(TestValue<float>("{ y:1.e0 }", "float"), 1.0f);
   668  TEST_EQ(TestValue<float>("{ y:1.e+0 }", "float"), 1.0f);
   669  TEST_EQ(TestValue<float>("{ y:1.e-0 }", "float"), 1.0f);
   670  TEST_EQ(TestValue<float>("{ y:0.125 }", "float"), 0.125f);
   671  TEST_EQ(TestValue<float>("{ y:.125 }", "float"), 0.125f);
   672  TEST_EQ(TestValue<float>("{ y:-.125 }", "float"), -0.125f);
   673  TEST_EQ(TestValue<float>("{ y:+.125 }", "float"), +0.125f);
   674  TEST_EQ(TestValue<float>("{ y:5 }", "float"), 5.0f);
   675  TEST_EQ(TestValue<float>("{ y:\"5\" }", "float"), 5.0f);
   676
   677#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
   678  // Old MSVC versions may have problem with this check.
   679  // https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/
   680  TEST_EQ(TestValue<double>("{ y:6.9294956446009195e15 }", "double"),
   681          6929495644600920.0);
   682  // check nan's
   683  TEST_EQ(std::isnan(TestValue<double>("{ y:nan }", "double")), true);
   684  TEST_EQ(std::isnan(TestValue<float>("{ y:nan }", "float")), true);
   685  TEST_EQ(std::isnan(TestValue<float>("{ y:\"nan\" }", "float")), true);
   686  TEST_EQ(std::isnan(TestValue<float>("{ y:\"+nan\" }", "float")), true);
   687  TEST_EQ(std::isnan(TestValue<float>("{ y:\"-nan\" }", "float")), true);
   688  TEST_EQ(std::isnan(TestValue<float>("{ y:+nan }", "float")), true);
   689  TEST_EQ(std::isnan(TestValue<float>("{ y:-nan }", "float")), true);
   690  TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=nan")), true);
   691  TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=-nan")), true);
   692  // check inf
   693  TEST_EQ(TestValue<float>("{ y:inf }", "float"), infinity_f);
   694  TEST_EQ(TestValue<float>("{ y:\"inf\" }", "float"), infinity_f);
   695  TEST_EQ(TestValue<float>("{ y:\"-inf\" }", "float"), -infinity_f);
   696  TEST_EQ(TestValue<float>("{ y:\"+inf\" }", "float"), infinity_f);
   697  TEST_EQ(TestValue<float>("{ y:+inf }", "float"), infinity_f);
   698  TEST_EQ(TestValue<float>("{ y:-inf }", "float"), -infinity_f);
   699  TEST_EQ(TestValue<float>(nullptr, "float=inf"), infinity_f);
   700  TEST_EQ(TestValue<float>(nullptr, "float=-inf"), -infinity_f);
   701  TestValue<double>(
   702      "{ y: [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
   703      "3.0e2] }",
   704      "[double]");
   705  TestValue<float>(
   706      "{ y: [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
   707      "3.0e2] }",
   708      "[float]");
   709
   710  // Test binary format of float point.
   711  // https://en.cppreference.com/w/cpp/language/floating_literal
   712  // 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 =
   713  TEST_EQ(TestValue<double>("{ y:0x12.34p-1 }", "double"), 9.1015625);
   714  // hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0
   715  TEST_EQ(TestValue<float>("{ y:-0x0.2p0 }", "float"), -0.125f);
   716  TEST_EQ(TestValue<float>("{ y:-0x.2p1 }", "float"), -0.25f);
   717  TEST_EQ(TestValue<float>("{ y:0x1.2p3 }", "float"), 9.0f);
   718  TEST_EQ(TestValue<float>("{ y:0x10.1p0 }", "float"), 16.0625f);
   719  TEST_EQ(TestValue<double>("{ y:0x1.2p3 }", "double"), 9.0);
   720  TEST_EQ(TestValue<double>("{ y:0x10.1p0 }", "double"), 16.0625);
   721  TEST_EQ(TestValue<double>("{ y:0xC.68p+2 }", "double"), 49.625);
   722  TestValue<double>("{ y: [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]");
   723  TestValue<float>("{ y: [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]");
   724
   725#else   // FLATBUFFERS_HAS_NEW_STRTOD
   726  TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped");
   727#endif  // !FLATBUFFERS_HAS_NEW_STRTOD
   728}
   729
   730void UnicodeTest() {
   731  flatbuffers::Parser parser;
   732  // Without setting allow_non_utf8 = true, we treat \x sequences as byte
   733  // sequences which are then validated as UTF-8.
   734  TEST_EQ(parser.Parse("table T { F:string; }"
   735                       "root_type T;"
   736                       "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
   737                       "\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8"
   738                       "3D\\uDE0E\" }"),
   739          true);
   740  std::string jsongen;
   741  parser.opts.indent_step = -1;
   742  auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen);
   743  TEST_NULL(result);
   744  TEST_EQ_STR(jsongen.c_str(),
   745              "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
   746              "\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}");
   747}
   748
   749void UnicodeTestAllowNonUTF8() {
   750  flatbuffers::Parser parser;
   751  parser.opts.allow_non_utf8 = true;
   752  TEST_EQ(
   753      parser.Parse(
   754          "table T { F:string; }"
   755          "root_type T;"
   756          "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
   757          "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
   758      true);
   759  std::string jsongen;
   760  parser.opts.indent_step = -1;
   761  auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen);
   762  TEST_NULL(result);
   763  TEST_EQ_STR(
   764      jsongen.c_str(),
   765      "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
   766      "\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}");
   767}
   768
   769void UnicodeTestGenerateTextFailsOnNonUTF8() {
   770  flatbuffers::Parser parser;
   771  // Allow non-UTF-8 initially to model what happens when we load a binary
   772  // flatbuffer from disk which contains non-UTF-8 strings.
   773  parser.opts.allow_non_utf8 = true;
   774  TEST_EQ(
   775      parser.Parse(
   776          "table T { F:string; }"
   777          "root_type T;"
   778          "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
   779          "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
   780      true);
   781  std::string jsongen;
   782  parser.opts.indent_step = -1;
   783  // Now, disallow non-UTF-8 (the default behavior) so GenText indicates
   784  // failure.
   785  parser.opts.allow_non_utf8 = false;
   786  auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen);
   787  TEST_EQ_STR(result, "string contains non-utf8 bytes");
   788}
   789
   790void UnicodeSurrogatesTest() {
   791  flatbuffers::Parser parser;
   792
   793  TEST_EQ(parser.Parse("table T { F:string (id: 0); }"
   794                       "root_type T;"
   795                       "{ F:\"\\uD83D\\uDCA9\"}"),
   796          true);
   797  auto root = flatbuffers::GetRoot<flatbuffers::Table>(
   798      parser.builder_.GetBufferPointer());
   799  auto string = root->GetPointer<flatbuffers::String *>(
   800      flatbuffers::FieldIndexToOffset(0));
   801  TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9");
   802}
   803
   804void UnknownFieldsTest() {
   805  flatbuffers::IDLOptions opts;
   806  opts.skip_unexpected_fields_in_json = true;
   807  flatbuffers::Parser parser(opts);
   808
   809  TEST_EQ(parser.Parse("table T { str:string; i:int;}"
   810                       "root_type T;"
   811                       "{ str:\"test\","
   812                       "unknown_string:\"test\","
   813                       "\"unknown_string\":\"test\","
   814                       "unknown_int:10,"
   815                       "unknown_float:1.0,"
   816                       "unknown_array: [ 1, 2, 3, 4],"
   817                       "unknown_object: { i: 10 },"
   818                       "\"unknown_object\": { \"i\": 10 },"
   819                       "i:10}"),
   820          true);
   821
   822  std::string jsongen;
   823  parser.opts.indent_step = -1;
   824  auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen);
   825  TEST_NULL(result);
   826  TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}");
   827}
   828
   829void ParseUnionTest() {
   830  // Unions must be parseable with the type field following the object.
   831  flatbuffers::Parser parser;
   832  TEST_EQ(parser.Parse("table T { A:int; }"
   833                       "union U { T }"
   834                       "table V { X:U; }"
   835                       "root_type V;"
   836                       "{ X:{ A:1 }, X_type: T }"),
   837          true);
   838  // Unions must be parsable with prefixed namespace.
   839  flatbuffers::Parser parser2;
   840  TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }"
   841                        "table B { e:U; } root_type B;"
   842                        "{ e_type: N_A, e: {} }"),
   843          true);
   844
   845  // Test union underlying type
   846  const char *source = "table A {} table B {} union U : int {A, B} table C {test_union: U; test_vector_of_union: [U];}";
   847  flatbuffers::Parser parser3;
   848  parser3.opts.lang_to_generate = flatbuffers::IDLOptions::kCpp | flatbuffers::IDLOptions::kTs;
   849  TEST_EQ(parser3.Parse(source), true);
   850  
   851  parser3.opts.lang_to_generate &= flatbuffers::IDLOptions::kJava;
   852  TEST_EQ(parser3.Parse(source), false);
   853}
   854
   855void ValidSameNameDifferentNamespaceTest() {
   856  // Duplicate table names in different namespaces must be parsable
   857  TEST_ASSERT(flatbuffers::Parser().Parse(
   858      "namespace A; table X {} namespace B; table X {}"));
   859  // Duplicate union names in different namespaces must be parsable
   860  TEST_ASSERT(flatbuffers::Parser().Parse(
   861      "namespace A; union X {} namespace B; union X {}"));
   862  // Clashing table and union names in different namespaces must be parsable
   863  TEST_ASSERT(flatbuffers::Parser().Parse(
   864      "namespace A; table X {} namespace B; union X {}"));
   865  TEST_ASSERT(flatbuffers::Parser().Parse(
   866      "namespace A; union X {} namespace B; table X {}"));
   867}
   868
   869void WarningsAsErrorsTest() {
   870  {
   871    flatbuffers::IDLOptions opts;
   872    // opts.warnings_as_errors should default to false
   873    flatbuffers::Parser parser(opts);
   874    TEST_EQ(parser.Parse("table T { THIS_NAME_CAUSES_A_WARNING:string;}\n"
   875                         "root_type T;"),
   876            true);
   877  }
   878  {
   879    flatbuffers::IDLOptions opts;
   880    opts.warnings_as_errors = true;
   881    flatbuffers::Parser parser(opts);
   882    TEST_EQ(parser.Parse("table T { THIS_NAME_CAUSES_A_WARNING:string;}\n"
   883                         "root_type T;"),
   884            false);
   885  }
   886}
   887
   888void StringVectorDefaultsTest() {
   889  std::vector<std::string> schemas;
   890  schemas.push_back("table Monster { mana: string = \"\"; }");
   891  schemas.push_back("table Monster { mana: string = \"mystr\"; }");
   892  schemas.push_back("table Monster { mana: string = \"  \"; }");
   893  schemas.push_back("table Monster { mana: string = \"null\"; }");
   894  schemas.push_back("table Monster { mana: [int] = []; }");
   895  schemas.push_back("table Monster { mana: [uint] = [  ]; }");
   896  schemas.push_back("table Monster { mana: [byte] = [\t\t\n]; }");
   897  schemas.push_back("enum E:int{}table Monster{mana:[E]=[];}");
   898  for (auto s = schemas.begin(); s < schemas.end(); s++) {
   899    flatbuffers::Parser parser;
   900    TEST_ASSERT(parser.Parse(s->c_str()));
   901    const auto *mana = parser.structs_.Lookup("Monster")->fields.Lookup("mana");
   902    TEST_EQ(mana->IsDefault(), true);
   903  }
   904}
   905
   906void FieldIdentifierTest() {
   907  using flatbuffers::Parser;
   908  TEST_EQ(true, Parser().Parse("table T{ f: int (id:0); }"));
   909  // non-integer `id` should be rejected
   910  TEST_EQ(false, Parser().Parse("table T{ f: int (id:text); }"));
   911  TEST_EQ(false, Parser().Parse("table T{ f: int (id:\"text\"); }"));
   912  TEST_EQ(false, Parser().Parse("table T{ f: int (id:0text); }"));
   913  TEST_EQ(false, Parser().Parse("table T{ f: int (id:1.0); }"));
   914  TEST_EQ(false, Parser().Parse("table T{ f: int (id:-1); g: int (id:0); }"));
   915  TEST_EQ(false, Parser().Parse("table T{ f: int (id:129496726); }"));
   916  // A unuion filed occupys two ids: enumerator + pointer (offset).
   917  TEST_EQ(false,
   918          Parser().Parse("union X{} table T{ u: X(id:0); table F{x:int;\n}"));
   919  // Positive tests for unions
   920  TEST_EQ(true, Parser().Parse("union X{} table T{ u: X (id:1); }"));
   921  TEST_EQ(true, Parser().Parse("union X{} table T{ u: X; }"));
   922  // Test using 'inf' and 'nan' words both as identifiers and as default values.
   923  TEST_EQ(true, Parser().Parse("table T{ nan: string; }"));
   924  TEST_EQ(true, Parser().Parse("table T{ inf: string; }"));
   925#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
   926  TEST_EQ(true, Parser().Parse("table T{ inf: float = inf; }"));
   927  TEST_EQ(true, Parser().Parse("table T{ nan: float = inf; }"));
   928#endif
   929}
   930
   931}  // namespace tests
   932}  // namespace flatbuffers

View as plain text