...

Source file src/github.com/golang/geo/s2/metric.go

Documentation: github.com/golang/geo/s2

     1  // Copyright 2015 Google Inc. All rights reserved.
     2  //
     3  // Licensed under the Apache License, Version 2.0 (the "License");
     4  // you may not use this file except in compliance with the License.
     5  // You may obtain a copy of the License at
     6  //
     7  //     http://www.apache.org/licenses/LICENSE-2.0
     8  //
     9  // Unless required by applicable law or agreed to in writing, software
    10  // distributed under the License is distributed on an "AS IS" BASIS,
    11  // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    12  // See the License for the specific language governing permissions and
    13  // limitations under the License.
    14  
    15  package s2
    16  
    17  // This file implements functions for various S2 measurements.
    18  
    19  import "math"
    20  
    21  // A Metric is a measure for cells. It is used to describe the shape and size
    22  // of cells. They are useful for deciding which cell level to use in order to
    23  // satisfy a given condition (e.g. that cell vertices must be no further than
    24  // "x" apart). You can use the Value(level) method to compute the corresponding
    25  // length or area on the unit sphere for cells at a given level. The minimum
    26  // and maximum bounds are valid for cells at all levels, but they may be
    27  // somewhat conservative for very large cells (e.g. face cells).
    28  type Metric struct {
    29  	// Dim is either 1 or 2, for a 1D or 2D metric respectively.
    30  	Dim int
    31  	// Deriv is the scaling factor for the metric.
    32  	Deriv float64
    33  }
    34  
    35  // Defined metrics.
    36  // Of the projection methods defined in C++, Go only supports the quadratic projection.
    37  
    38  // Each cell is bounded by four planes passing through its four edges and
    39  // the center of the sphere. These metrics relate to the angle between each
    40  // pair of opposite bounding planes, or equivalently, between the planes
    41  // corresponding to two different s-values or two different t-values.
    42  var (
    43  	MinAngleSpanMetric = Metric{1, 4.0 / 3}
    44  	AvgAngleSpanMetric = Metric{1, math.Pi / 2}
    45  	MaxAngleSpanMetric = Metric{1, 1.704897179199218452}
    46  )
    47  
    48  // The width of geometric figure is defined as the distance between two
    49  // parallel bounding lines in a given direction. For cells, the minimum
    50  // width is always attained between two opposite edges, and the maximum
    51  // width is attained between two opposite vertices. However, for our
    52  // purposes we redefine the width of a cell as the perpendicular distance
    53  // between a pair of opposite edges. A cell therefore has two widths, one
    54  // in each direction. The minimum width according to this definition agrees
    55  // with the classic geometric one, but the maximum width is different. (The
    56  // maximum geometric width corresponds to MaxDiag defined below.)
    57  //
    58  // The average width in both directions for all cells at level k is approximately
    59  // AvgWidthMetric.Value(k).
    60  //
    61  // The width is useful for bounding the minimum or maximum distance from a
    62  // point on one edge of a cell to the closest point on the opposite edge.
    63  // For example, this is useful when growing regions by a fixed distance.
    64  var (
    65  	MinWidthMetric = Metric{1, 2 * math.Sqrt2 / 3}
    66  	AvgWidthMetric = Metric{1, 1.434523672886099389}
    67  	MaxWidthMetric = Metric{1, MaxAngleSpanMetric.Deriv}
    68  )
    69  
    70  // The edge length metrics can be used to bound the minimum, maximum,
    71  // or average distance from the center of one cell to the center of one of
    72  // its edge neighbors. In particular, it can be used to bound the distance
    73  // between adjacent cell centers along the space-filling Hilbert curve for
    74  // cells at any given level.
    75  var (
    76  	MinEdgeMetric = Metric{1, 2 * math.Sqrt2 / 3}
    77  	AvgEdgeMetric = Metric{1, 1.459213746386106062}
    78  	MaxEdgeMetric = Metric{1, MaxAngleSpanMetric.Deriv}
    79  
    80  	// MaxEdgeAspect is the maximum edge aspect ratio over all cells at any level,
    81  	// where the edge aspect ratio of a cell is defined as the ratio of its longest
    82  	// edge length to its shortest edge length.
    83  	MaxEdgeAspect = 1.442615274452682920
    84  
    85  	MinAreaMetric = Metric{2, 8 * math.Sqrt2 / 9}
    86  	AvgAreaMetric = Metric{2, 4 * math.Pi / 6}
    87  	MaxAreaMetric = Metric{2, 2.635799256963161491}
    88  )
    89  
    90  // The maximum diagonal is also the maximum diameter of any cell,
    91  // and also the maximum geometric width (see the comment for widths). For
    92  // example, the distance from an arbitrary point to the closest cell center
    93  // at a given level is at most half the maximum diagonal length.
    94  var (
    95  	MinDiagMetric = Metric{1, 8 * math.Sqrt2 / 9}
    96  	AvgDiagMetric = Metric{1, 2.060422738998471683}
    97  	MaxDiagMetric = Metric{1, 2.438654594434021032}
    98  
    99  	// MaxDiagAspect is the maximum diagonal aspect ratio over all cells at any
   100  	// level, where the diagonal aspect ratio of a cell is defined as the ratio
   101  	// of its longest diagonal length to its shortest diagonal length.
   102  	MaxDiagAspect = math.Sqrt(3)
   103  )
   104  
   105  // Value returns the value of the metric at the given level.
   106  func (m Metric) Value(level int) float64 {
   107  	return math.Ldexp(m.Deriv, -m.Dim*level)
   108  }
   109  
   110  // MinLevel returns the minimum level such that the metric is at most
   111  // the given value, or MaxLevel (30) if there is no such level.
   112  //
   113  // For example, MinLevel(0.1) returns the minimum level such that all cell diagonal
   114  // lengths are 0.1 or smaller. The returned value is always a valid level.
   115  //
   116  // In C++, this is called GetLevelForMaxValue.
   117  func (m Metric) MinLevel(val float64) int {
   118  	if val < 0 {
   119  		return MaxLevel
   120  	}
   121  
   122  	level := -(math.Ilogb(val/m.Deriv) >> uint(m.Dim-1))
   123  	if level > MaxLevel {
   124  		level = MaxLevel
   125  	}
   126  	if level < 0 {
   127  		level = 0
   128  	}
   129  	return level
   130  }
   131  
   132  // MaxLevel returns the maximum level such that the metric is at least
   133  // the given value, or zero if there is no such level.
   134  //
   135  // For example, MaxLevel(0.1) returns the maximum level such that all cells have a
   136  // minimum width of 0.1 or larger. The returned value is always a valid level.
   137  //
   138  // In C++, this is called GetLevelForMinValue.
   139  func (m Metric) MaxLevel(val float64) int {
   140  	if val <= 0 {
   141  		return MaxLevel
   142  	}
   143  
   144  	level := math.Ilogb(m.Deriv/val) >> uint(m.Dim-1)
   145  	if level > MaxLevel {
   146  		level = MaxLevel
   147  	}
   148  	if level < 0 {
   149  		level = 0
   150  	}
   151  	return level
   152  }
   153  
   154  // ClosestLevel returns the level at which the metric has approximately the given
   155  // value. The return value is always a valid level. For example,
   156  // AvgEdgeMetric.ClosestLevel(0.1) returns the level at which the average cell edge
   157  // length is approximately 0.1.
   158  func (m Metric) ClosestLevel(val float64) int {
   159  	x := math.Sqrt2
   160  	if m.Dim == 2 {
   161  		x = 2
   162  	}
   163  	return m.MinLevel(x * val)
   164  }
   165  

View as plain text