package exifcommon import ( "bytes" "math" "reflect" "testing" "time" "github.com/dsoprea/go-logging" ) func TestValueEncoder_encodeBytes__Cycle(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []byte("original text") ed, err := ve.encodeBytes(original) log.PanicIf(err) if ed.Type != TypeByte { t.Fatalf("IFD type not expected.") } expected := []byte(original) if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 13 { t.Fatalf("Unit-count not correct.") } recovered, err := parser.ParseBytes(ed.Encoded, ed.UnitCount) log.PanicIf(err) if reflect.DeepEqual(recovered, original) != true { t.Fatalf("Value not recovered correctly.") } } func TestValueEncoder_encodeAscii__Cycle(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := "original text" ed, err := ve.encodeAscii(original) log.PanicIf(err) if ed.Type != TypeAscii { t.Fatalf("IFD type not expected.") } expected := []byte(original) expected = append(expected, 0) if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 14 { t.Fatalf("Unit-count not correct.") } // Check that the string was recovered correctly and with the trailing NUL // character autostripped. recovered, err := parser.ParseAscii(ed.Encoded, ed.UnitCount) log.PanicIf(err) if reflect.DeepEqual(recovered, original) != true { t.Fatalf("Value not recovered correctly.") } } func TestValueEncoder_encodeAsciiNoNul__Cycle(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := "original text" ed, err := ve.encodeAsciiNoNul(original) log.PanicIf(err) if ed.Type != TypeAsciiNoNul { t.Fatalf("IFD type not expected.") } expected := []byte(original) if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 13 { t.Fatalf("Unit-count not correct.") } // Check that the string was recovered correctly and with the trailing NUL // character ignored (because not expected in the context of that type). recovered, err := parser.ParseAsciiNoNul(ed.Encoded, ed.UnitCount) log.PanicIf(err) if reflect.DeepEqual(recovered, string(expected)) != true { t.Fatalf("Value not recovered correctly.") } } func TestValueEncoder_encodeShorts__Cycle(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []uint16{0x11, 0x22, 0x33, 0x44, 0x55} ed, err := ve.encodeShorts(original) log.PanicIf(err) if ed.Type != TypeShort { t.Fatalf("IFD type not expected.") } expected := []byte{ 0x00, 0x11, 0x00, 0x22, 0x00, 0x33, 0x00, 0x44, 0x00, 0x55, } if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 5 { t.Fatalf("Unit-count not correct.") } recovered, err := parser.ParseShorts(ed.Encoded, ed.UnitCount, byteOrder) log.PanicIf(err) if reflect.DeepEqual(recovered, original) != true { t.Fatalf("Value not recovered correctly.") } } func TestValueEncoder_encodeLongs__Cycle(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []uint32{0x11, 0x22, 0x33, 0x44, 0x55} ed, err := ve.encodeLongs(original) log.PanicIf(err) if ed.Type != TypeLong { t.Fatalf("IFD type not expected.") } expected := []byte{ 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x55, } if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 5 { t.Fatalf("Unit-count not correct.") } recovered, err := parser.ParseLongs(ed.Encoded, ed.UnitCount, byteOrder) log.PanicIf(err) if reflect.DeepEqual(recovered, original) != true { t.Fatalf("Value not recovered correctly.") } } func TestValueEncoder_encodeFloats__Cycle(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []float32{3.14159265, 2.71828182, 51.0, 68.0, 85.0} ed, err := ve.encodeFloats(original) log.PanicIf(err) if ed.Type != TypeFloat { t.Fatalf("IFD type not expected.") } expected := []byte{ 0x40, 0x49, 0x0f, 0xdb, 0x40, 0x2d, 0xf8, 0x54, 0x42, 0x4c, 0x00, 0x00, 0x42, 0x88, 0x00, 0x00, 0x42, 0xaa, 0x00, 0x00, } if bytes.Equal(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 5 { t.Fatalf("Unit-count not correct.") } recovered, err := parser.ParseFloats(ed.Encoded, ed.UnitCount, byteOrder) log.PanicIf(err) for i, v := range recovered { if v < original[i] || v >= math.Nextafter32(original[i], original[i]+1) { t.Fatalf("ReadFloats expecting %v, received %v", original[i], v) } } } func TestValueEncoder_encodeDoubles__Cycle(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []float64{3.14159265, 2.71828182, 954877.1230695, 68.0, 85.0} ed, err := ve.encodeDoubles(original) log.PanicIf(err) if ed.Type != TypeDouble { t.Fatalf("IFD type not expected.") } expected := []byte{ 0x40, 0x09, 0x21, 0xfb, 0x53, 0xc8, 0xd4, 0xf1, 0x40, 0x05, 0xbf, 0x0a, 0x89, 0xf1, 0xb0, 0xdd, 0x41, 0x2d, 0x23, 0xfa, 0x3f, 0x02, 0xf7, 0x2b, 0x40, 0x51, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x55, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, } if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 5 { t.Fatalf("Unit-count not correct.") } recovered, err := parser.ParseDoubles(ed.Encoded, ed.UnitCount, byteOrder) log.PanicIf(err) for i, v := range recovered { if v < original[i] || v >= math.Nextafter(original[i], original[i]+1) { t.Fatalf("ReadDoubles expecting %v, received %v", original[i], v) } } } func TestValueEncoder_encodeRationals__Cycle(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []Rational{ { Numerator: 0x11, Denominator: 0x22, }, { Numerator: 0x33, Denominator: 0x44, }, { Numerator: 0x55, Denominator: 0x66, }, { Numerator: 0x77, Denominator: 0x88, }, { Numerator: 0x99, Denominator: 0x00, }, } ed, err := ve.encodeRationals(original) log.PanicIf(err) if ed.Type != TypeRational { t.Fatalf("IFD type not expected.") } expected := []byte{ 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x55, 0x00, 0x00, 0x00, 0x66, 0x00, 0x00, 0x00, 0x77, 0x00, 0x00, 0x00, 0x88, 0x00, 0x00, 0x00, 0x99, 0x00, 0x00, 0x00, 0x00, } if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 5 { t.Fatalf("Unit-count not correct.") } recovered, err := parser.ParseRationals(ed.Encoded, ed.UnitCount, byteOrder) log.PanicIf(err) if reflect.DeepEqual(recovered, original) != true { t.Fatalf("Value not recovered correctly.") } } func TestValueEncoder_encodeSignedLongs__Cycle(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []int32{0x11, 0x22, 0x33, 0x44, 0x55} ed, err := ve.encodeSignedLongs(original) log.PanicIf(err) if ed.Type != TypeSignedLong { t.Fatalf("IFD type not expected.") } expected := []byte{ 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x55, } if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 5 { t.Fatalf("Unit-count not correct.") } recovered, err := parser.ParseSignedLongs(ed.Encoded, ed.UnitCount, byteOrder) log.PanicIf(err) if reflect.DeepEqual(recovered, original) != true { t.Fatalf("Value not recovered correctly.") } } func TestValueEncoder_encodeSignedRationals__Cycle(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []SignedRational{ { Numerator: 0x11, Denominator: 0x22, }, { Numerator: 0x33, Denominator: 0x44, }, { Numerator: 0x55, Denominator: 0x66, }, { Numerator: 0x77, Denominator: 0x88, }, { Numerator: 0x99, Denominator: 0x00, }, } ed, err := ve.encodeSignedRationals(original) log.PanicIf(err) if ed.Type != TypeSignedRational { t.Fatalf("IFD type not expected.") } expected := []byte{ 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x55, 0x00, 0x00, 0x00, 0x66, 0x00, 0x00, 0x00, 0x77, 0x00, 0x00, 0x00, 0x88, 0x00, 0x00, 0x00, 0x99, 0x00, 0x00, 0x00, 0x00, } if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 5 { t.Fatalf("Unit-count not correct.") } recovered, err := parser.ParseSignedRationals(ed.Encoded, ed.UnitCount, byteOrder) log.PanicIf(err) if reflect.DeepEqual(recovered, original) != true { t.Fatalf("Value not recovered correctly.") } } func TestValueEncoder_Encode__Byte(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []byte("original text") ed, err := ve.Encode(original) log.PanicIf(err) if ed.Type != TypeByte { t.Fatalf("IFD type not expected.") } expected := []byte(original) if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 13 { t.Fatalf("Unit-count not correct.") } } func TestValueEncoder_Encode__Ascii(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := "original text" ed, err := ve.Encode(original) log.PanicIf(err) if ed.Type != TypeAscii { t.Fatalf("IFD type not expected.") } expected := []byte(original) expected = append(expected, 0) if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 14 { t.Fatalf("Unit-count not correct.") } } func TestValueEncoder_Encode__Short(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []uint16{0x11, 0x22, 0x33, 0x44, 0x55} ed, err := ve.Encode(original) log.PanicIf(err) if ed.Type != TypeShort { t.Fatalf("IFD type not expected.") } expected := []byte{ 0x00, 0x11, 0x00, 0x22, 0x00, 0x33, 0x00, 0x44, 0x00, 0x55, } if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 5 { t.Fatalf("Unit-count not correct.") } } func TestValueEncoder_Encode__Long(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []uint32{0x11, 0x22, 0x33, 0x44, 0x55} ed, err := ve.Encode(original) log.PanicIf(err) if ed.Type != TypeLong { t.Fatalf("IFD type not expected.") } expected := []byte{ 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x55, } if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 5 { t.Fatalf("Unit-count not correct.") } } func TestValueEncoder_Encode__Float(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []float32{3.14159265, 2.71828182, 51.0, 68.0, 85.0} ed, err := ve.Encode(original) log.PanicIf(err) if ed.Type != TypeFloat { t.Fatalf("IFD type not expected.") } expected := []byte{ 0x40, 0x49, 0x0f, 0xdb, 0x40, 0x2d, 0xf8, 0x54, 0x42, 0x4c, 0x00, 0x00, 0x42, 0x88, 0x00, 0x00, 0x42, 0xaa, 0x00, 0x00, } if bytes.Equal(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 5 { t.Fatalf("Unit-count not correct.") } } func TestValueEncoder_Encode__Double(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []float64{3.14159265, 2.71828182, 954877.1230695, 68.0, 85.0} ed, err := ve.Encode(original) log.PanicIf(err) if ed.Type != TypeDouble { t.Fatalf("IFD type not expected.") } expected := []byte{ 0x40, 0x09, 0x21, 0xfb, 0x53, 0xc8, 0xd4, 0xf1, 0x40, 0x05, 0xbf, 0x0a, 0x89, 0xf1, 0xb0, 0xdd, 0x41, 0x2d, 0x23, 0xfa, 0x3f, 0x02, 0xf7, 0x2b, 0x40, 0x51, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x55, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, } if bytes.Equal(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 5 { t.Fatalf("Unit-count not correct.") } } func TestValueEncoder_Encode__Rational(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []Rational{ { Numerator: 0x11, Denominator: 0x22, }, { Numerator: 0x33, Denominator: 0x44, }, { Numerator: 0x55, Denominator: 0x66, }, { Numerator: 0x77, Denominator: 0x88, }, { Numerator: 0x99, Denominator: 0x00, }, } ed, err := ve.Encode(original) log.PanicIf(err) if ed.Type != TypeRational { t.Fatalf("IFD type not expected.") } expected := []byte{ 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x55, 0x00, 0x00, 0x00, 0x66, 0x00, 0x00, 0x00, 0x77, 0x00, 0x00, 0x00, 0x88, 0x00, 0x00, 0x00, 0x99, 0x00, 0x00, 0x00, 0x00, } if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 5 { t.Fatalf("Unit-count not correct.") } } func TestValueEncoder_Encode__SignedLong(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []int32{0x11, 0x22, 0x33, 0x44, 0x55} ed, err := ve.Encode(original) log.PanicIf(err) if ed.Type != TypeSignedLong { t.Fatalf("IFD type not expected.") } expected := []byte{ 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x55, } if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 5 { t.Fatalf("Unit-count not correct.") } } func TestValueEncoder_Encode__SignedRational(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) original := []SignedRational{ { Numerator: 0x11, Denominator: 0x22, }, { Numerator: 0x33, Denominator: 0x44, }, { Numerator: 0x55, Denominator: 0x66, }, { Numerator: 0x77, Denominator: 0x88, }, { Numerator: 0x99, Denominator: 0x00, }, } ed, err := ve.Encode(original) log.PanicIf(err) if ed.Type != TypeSignedRational { t.Fatalf("IFD type not expected.") } expected := []byte{ 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x55, 0x00, 0x00, 0x00, 0x66, 0x00, 0x00, 0x00, 0x77, 0x00, 0x00, 0x00, 0x88, 0x00, 0x00, 0x00, 0x99, 0x00, 0x00, 0x00, 0x00, } if reflect.DeepEqual(ed.Encoded, expected) != true { t.Fatalf("Data not encoded correctly.") } else if ed.UnitCount != 5 { t.Fatalf("Unit-count not correct.") } } func TestValueEncoder_Encode__Timestamp(t *testing.T) { byteOrder := TestDefaultByteOrder ve := NewValueEncoder(byteOrder) now := time.Now() ed, err := ve.Encode(now) log.PanicIf(err) if ed.Type != TypeAscii { t.Fatalf("Timestamp not encoded as ASCII.") } expectedTimestampBytes := ExifFullTimestampString(now) // Leave an extra byte for the NUL. expected := make([]byte, len(expectedTimestampBytes)+1) copy(expected, expectedTimestampBytes) if bytes.Equal(ed.Encoded, expected) != true { t.Fatalf("Timestamp not encoded correctly: [%s] != [%s]", string(ed.Encoded), string(expected)) } }