// Package polynomial provides representations of polynomials over the scalars // of a group. package polynomial import "github.com/cloudflare/circl/group" // Polynomial stores a polynomial over the set of scalars of a group. type Polynomial struct { // Internal representation is in polynomial basis: // Thus, // p(x) = \sum_i^k c[i] x^i, // where k = len(c)-1 is the degree of the polynomial. c []group.Scalar } // New creates a new polynomial given its coefficients in ascending order. // Thus, // // p(x) = \sum_i^k c[i] x^i, // // where k = len(c)-1 is the degree of the polynomial. // // The zero polynomial has degree equal to -1 and can be instantiated passing // nil to New. func New(coeffs []group.Scalar) (p Polynomial) { if l := len(coeffs); l != 0 { p.c = make([]group.Scalar, l) for i := range coeffs { p.c[i] = coeffs[i].Copy() } } return } func (p Polynomial) Degree() int { i := len(p.c) - 1 for i > 0 && p.c[i].IsZero() { i-- } return i } func (p Polynomial) Evaluate(x group.Scalar) group.Scalar { px := x.Group().NewScalar() if l := len(p.c); l != 0 { px.Set(p.c[l-1]) for i := l - 2; i >= 0; i-- { px.Mul(px, x) px.Add(px, p.c[i]) } } return px } // LagrangePolynomial stores a Lagrange polynomial over the set of scalars of a group. type LagrangePolynomial struct { // Internal representation is in Lagrange basis: // Thus, // p(x) = \sum_i^k y[i] L_j(x), where k is the degree of the polynomial, // L_j(x) = \prod_i^k (x-x[i])/(x[j]-x[i]), // y[i] = p(x[i]), and // all x[i] are different. x, y []group.Scalar } // NewLagrangePolynomial creates a polynomial in Lagrange basis given a list // of nodes (x) and values (y), such that: // // p(x) = \sum_i^k y[i] L_j(x), where k is the degree of the polynomial, // L_j(x) = \prod_i^k (x-x[i])/(x[j]-x[i]), // y[i] = p(x[i]), and // all x[i] are different. // // It panics if one of these conditions does not hold. // // The zero polynomial has degree equal to -1 and can be instantiated passing // (nil,nil) to NewLagrangePolynomial. func NewLagrangePolynomial(x, y []group.Scalar) (l LagrangePolynomial) { if len(x) != len(y) { panic("lagrange: invalid length") } if !areAllDifferent(x) { panic("lagrange: x[i] must be different") } if n := len(x); n != 0 { l.x, l.y = make([]group.Scalar, n), make([]group.Scalar, n) for i := range x { l.x[i], l.y[i] = x[i].Copy(), y[i].Copy() } } return } func (l LagrangePolynomial) Degree() int { return len(l.x) - 1 } func (l LagrangePolynomial) Evaluate(x group.Scalar) group.Scalar { px := x.Group().NewScalar() tmp := x.Group().NewScalar() for i := range l.x { LjX := baseRatio(uint(i), l.x, x) tmp.Mul(l.y[i], LjX) px.Add(px, tmp) } return px } // LagrangeBase returns the j-th Lagrange polynomial base evaluated at x. // Thus, L_j(x) = \prod (x - x[i]) / (x[j] - x[i]) for 0 <= i < k, and i != j. func LagrangeBase(jth uint, xi []group.Scalar, x group.Scalar) group.Scalar { if jth >= uint(len(xi)) { panic("lagrange: invalid index") } return baseRatio(jth, xi, x) } func baseRatio(jth uint, xi []group.Scalar, x group.Scalar) group.Scalar { num := x.Copy() num.SetUint64(1) den := x.Copy() den.SetUint64(1) tmp := x.Copy() for i := range xi { if uint(i) != jth { num.Mul(num, tmp.Sub(x, xi[i])) den.Mul(den, tmp.Sub(xi[jth], xi[i])) } } return num.Mul(num, den.Inv(den)) } func areAllDifferent(x []group.Scalar) bool { m := make(map[string]struct{}) for i := range x { k, err := x[i].MarshalBinary() if err != nil { panic(err) } if _, exists := m[string(k)]; exists { return false } m[string(k)] = struct{}{} } return true }