// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package hashing import ( "math/bits" "unsafe" "github.com/zeebo/xxh3" ) func hashInt(val uint64, alg uint64) uint64 { // Two of xxhash's prime multipliers (which are chosen for their // bit dispersion properties) var multipliers = [2]uint64{11400714785074694791, 14029467366897019727} // Multiplying by the prime number mixes the low bits into the high bits, // then byte-swapping (which is a single CPU instruction) allows the // combined high and low bits to participate in the initial hash table index. return bits.ReverseBytes64(multipliers[alg] * val) } func hashFloat32(val float32, alg uint64) uint64 { // grab the raw byte pattern of the bt := *(*[4]byte)(unsafe.Pointer(&val)) x := uint64(*(*uint32)(unsafe.Pointer(&bt[0]))) hx := hashInt(x, alg) hy := hashInt(x, alg^1) return 4 ^ hx ^ hy } func hashFloat64(val float64, alg uint64) uint64 { bt := *(*[8]byte)(unsafe.Pointer(&val)) hx := hashInt(uint64(*(*uint32)(unsafe.Pointer(&bt[4]))), alg) hy := hashInt(uint64(*(*uint32)(unsafe.Pointer(&bt[0]))), alg^1) return 8 ^ hx ^ hy } // prime constants used for slightly increasing the hash quality further var exprimes = [2]uint64{1609587929392839161, 9650029242287828579} // for smaller amounts of bytes this is faster than even calling into // xxh3 to do the Hash, so we specialize in order to get the benefits // of that performance. func Hash(b []byte, alg uint64) uint64 { n := uint32(len(b)) if n <= 16 { switch { case n > 8: // 8 < length <= 16 // apply same principle as above, but as two 64-bit ints x := *(*uint64)(unsafe.Pointer(&b[n-8])) y := *(*uint64)(unsafe.Pointer(&b[0])) hx := hashInt(x, alg) hy := hashInt(y, alg^1) return uint64(n) ^ hx ^ hy case n >= 4: // 4 < length <= 8 // we can read the bytes as two overlapping 32-bit ints, apply different // hash functions to each in parallel // then xor the results x := *(*uint32)(unsafe.Pointer(&b[n-4])) y := *(*uint32)(unsafe.Pointer(&b[0])) hx := hashInt(uint64(x), alg) hy := hashInt(uint64(y), alg^1) return uint64(n) ^ hx ^ hy case n > 0: x := uint32((n << 24) ^ (uint32(b[0]) << 16) ^ (uint32(b[n/2]) << 8) ^ uint32(b[n-1])) return hashInt(uint64(x), alg) case n == 0: return 1 } } // increase differentiation enough to improve hash quality return xxh3.Hash(b) + exprimes[alg] }