// Copyright 2016, 2017 Thales e-Security, Inc // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. package crypto11 import ( "crypto" "crypto/rsa" "errors" "io" "math/big" "github.com/miekg/pkcs11" ) // errMalformedRSAPublicKey is returned when an RSA public key is not in a suitable form. // // Currently this means that the public exponent is either bigger than // 32 bits, or less than 2. var errMalformedRSAPublicKey = errors.New("malformed RSA public key") // errUnsupportedRSAOptions is returned when an unsupported RSA option is requested. // // Currently this means a nontrivial SessionKeyLen when decrypting; or // an unsupported hash function; or crypto.rsa.PSSSaltLengthAuto was // requested. var errUnsupportedRSAOptions = errors.New("unsupported RSA option value") // pkcs11PrivateKeyRSA contains a reference to a loaded PKCS#11 RSA private key object. type pkcs11PrivateKeyRSA struct { pkcs11PrivateKey } // Export the public key corresponding to a private RSA key. func exportRSAPublicKey(session *pkcs11Session, pubHandle pkcs11.ObjectHandle) (crypto.PublicKey, error) { template := []*pkcs11.Attribute{ pkcs11.NewAttribute(pkcs11.CKA_MODULUS, nil), pkcs11.NewAttribute(pkcs11.CKA_PUBLIC_EXPONENT, nil), } exported, err := session.ctx.GetAttributeValue(session.handle, pubHandle, template) if err != nil { return nil, err } var modulus = new(big.Int) modulus.SetBytes(exported[0].Value) var bigExponent = new(big.Int) bigExponent.SetBytes(exported[1].Value) if bigExponent.BitLen() > 32 { return nil, errMalformedRSAPublicKey } if bigExponent.Sign() < 1 { return nil, errMalformedRSAPublicKey } exponent := int(bigExponent.Uint64()) result := rsa.PublicKey{ N: modulus, E: exponent, } if result.E < 2 { return nil, errMalformedRSAPublicKey } return &result, nil } // GenerateRSAKeyPair creates an RSA key pair on the token. The id parameter is used to // set CKA_ID and must be non-nil. RSA private keys are generated with both sign and decrypt // permissions, and a public exponent of 65537. func (c *Context) GenerateRSAKeyPair(id []byte, bits int) (SignerDecrypter, error) { if c.closed.Get() { return nil, errClosed } public, err := NewAttributeSetWithID(id) if err != nil { return nil, err } // Copy the AttributeSet to allow modifications. private := public.Copy() return c.GenerateRSAKeyPairWithAttributes(public, private, bits) } // GenerateRSAKeyPairWithLabel creates an RSA key pair on the token. The id and label parameters are used to // set CKA_ID and CKA_LABEL respectively and must be non-nil. RSA private keys are generated with both sign and decrypt // permissions, and a public exponent of 65537. func (c *Context) GenerateRSAKeyPairWithLabel(id, label []byte, bits int) (SignerDecrypter, error) { if c.closed.Get() { return nil, errClosed } public, err := NewAttributeSetWithIDAndLabel(id, label) if err != nil { return nil, err } // Copy the AttributeSet to allow modifications. private := public.Copy() return c.GenerateRSAKeyPairWithAttributes(public, private, bits) } // GenerateRSAKeyPairWithAttributes generates an RSA key pair on the token. After this function returns, public and // private will contain the attributes applied to the key pair. If required attributes are missing, they will be set to // a default value. func (c *Context) GenerateRSAKeyPairWithAttributes(public, private AttributeSet, bits int) (SignerDecrypter, error) { if c.closed.Get() { return nil, errClosed } var k SignerDecrypter err := c.withSession(func(session *pkcs11Session) error { public.AddIfNotPresent([]*pkcs11.Attribute{ pkcs11.NewAttribute(pkcs11.CKA_CLASS, pkcs11.CKO_PUBLIC_KEY), pkcs11.NewAttribute(pkcs11.CKA_KEY_TYPE, pkcs11.CKK_RSA), pkcs11.NewAttribute(pkcs11.CKA_TOKEN, true), pkcs11.NewAttribute(pkcs11.CKA_VERIFY, true), pkcs11.NewAttribute(pkcs11.CKA_ENCRYPT, true), pkcs11.NewAttribute(pkcs11.CKA_PUBLIC_EXPONENT, []byte{1, 0, 1}), pkcs11.NewAttribute(pkcs11.CKA_MODULUS_BITS, bits), }) private.AddIfNotPresent([]*pkcs11.Attribute{ pkcs11.NewAttribute(pkcs11.CKA_TOKEN, true), pkcs11.NewAttribute(pkcs11.CKA_SIGN, true), pkcs11.NewAttribute(pkcs11.CKA_DECRYPT, true), pkcs11.NewAttribute(pkcs11.CKA_SENSITIVE, true), pkcs11.NewAttribute(pkcs11.CKA_EXTRACTABLE, false), }) mech := []*pkcs11.Mechanism{pkcs11.NewMechanism(pkcs11.CKM_RSA_PKCS_KEY_PAIR_GEN, nil)} pubHandle, privHandle, err := session.ctx.GenerateKeyPair(session.handle, mech, public.ToSlice(), private.ToSlice()) if err != nil { return err } pub, err := exportRSAPublicKey(session, pubHandle) if err != nil { return err } k = &pkcs11PrivateKeyRSA{ pkcs11PrivateKey: pkcs11PrivateKey{ pkcs11Object: pkcs11Object{ handle: privHandle, context: c, }, pubKeyHandle: pubHandle, pubKey: pub, }} return nil }) return k, err } // Decrypt decrypts a message using a RSA key. // // This completes the implemention of crypto.Decrypter for pkcs11PrivateKeyRSA. // // Note that the SessionKeyLen option (for PKCS#1v1.5 decryption) is not supported. // // The underlying PKCS#11 implementation may impose further restrictions. func (priv *pkcs11PrivateKeyRSA) Decrypt(rand io.Reader, ciphertext []byte, options crypto.DecrypterOpts) (plaintext []byte, err error) { err = priv.context.withSession(func(session *pkcs11Session) error { if options == nil { plaintext, err = decryptPKCS1v15(session, priv, ciphertext, 0) } else { switch o := options.(type) { case *rsa.PKCS1v15DecryptOptions: plaintext, err = decryptPKCS1v15(session, priv, ciphertext, o.SessionKeyLen) case *rsa.OAEPOptions: plaintext, err = decryptOAEP(session, priv, ciphertext, o.Hash, o.Label) default: err = errUnsupportedRSAOptions } } return err }) return plaintext, err } func decryptPKCS1v15(session *pkcs11Session, key *pkcs11PrivateKeyRSA, ciphertext []byte, sessionKeyLen int) ([]byte, error) { if sessionKeyLen != 0 { return nil, errUnsupportedRSAOptions } mech := []*pkcs11.Mechanism{pkcs11.NewMechanism(pkcs11.CKM_RSA_PKCS, nil)} if err := session.ctx.DecryptInit(session.handle, mech, key.handle); err != nil { return nil, err } return session.ctx.Decrypt(session.handle, ciphertext) } func decryptOAEP(session *pkcs11Session, key *pkcs11PrivateKeyRSA, ciphertext []byte, hashFunction crypto.Hash, label []byte) ([]byte, error) { hashAlg, mgfAlg, _, err := hashToPKCS11(hashFunction) if err != nil { return nil, err } mech := pkcs11.NewMechanism(pkcs11.CKM_RSA_PKCS_OAEP, pkcs11.NewOAEPParams(hashAlg, mgfAlg, pkcs11.CKZ_DATA_SPECIFIED, label)) err = session.ctx.DecryptInit(session.handle, []*pkcs11.Mechanism{mech}, key.handle) if err != nil { return nil, err } return session.ctx.Decrypt(session.handle, ciphertext) } func hashToPKCS11(hashFunction crypto.Hash) (hashAlg uint, mgfAlg uint, hashLen uint, err error) { switch hashFunction { case crypto.SHA1: return pkcs11.CKM_SHA_1, pkcs11.CKG_MGF1_SHA1, 20, nil case crypto.SHA224: return pkcs11.CKM_SHA224, pkcs11.CKG_MGF1_SHA224, 28, nil case crypto.SHA256: return pkcs11.CKM_SHA256, pkcs11.CKG_MGF1_SHA256, 32, nil case crypto.SHA384: return pkcs11.CKM_SHA384, pkcs11.CKG_MGF1_SHA384, 48, nil case crypto.SHA512: return pkcs11.CKM_SHA512, pkcs11.CKG_MGF1_SHA512, 64, nil default: return 0, 0, 0, errUnsupportedRSAOptions } } func signPSS(session *pkcs11Session, key *pkcs11PrivateKeyRSA, digest []byte, opts *rsa.PSSOptions) ([]byte, error) { var hMech, mgf, hLen, sLen uint var err error if hMech, mgf, hLen, err = hashToPKCS11(opts.Hash); err != nil { return nil, err } switch opts.SaltLength { case rsa.PSSSaltLengthAuto: // parseltongue constant // TODO we could (in principle) work out the biggest // possible size from the key, but until someone has // the effort to do that... return nil, errUnsupportedRSAOptions case rsa.PSSSaltLengthEqualsHash: sLen = hLen default: sLen = uint(opts.SaltLength) } // TODO this is pretty horrible, maybe the PKCS#11 wrapper // could be improved to help us out here parameters := concat(ulongToBytes(hMech), ulongToBytes(mgf), ulongToBytes(sLen)) mech := []*pkcs11.Mechanism{pkcs11.NewMechanism(pkcs11.CKM_RSA_PKCS_PSS, parameters)} if err = session.ctx.SignInit(session.handle, mech, key.handle); err != nil { return nil, err } return session.ctx.Sign(session.handle, digest) } var pkcs1Prefix = map[crypto.Hash][]byte{ crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14}, crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, } func signPKCS1v15(session *pkcs11Session, key *pkcs11PrivateKeyRSA, digest []byte, hash crypto.Hash) (signature []byte, err error) { /* Calculate T for EMSA-PKCS1-v1_5. */ oid := pkcs1Prefix[hash] T := make([]byte, len(oid)+len(digest)) copy(T[0:len(oid)], oid) copy(T[len(oid):], digest) mech := []*pkcs11.Mechanism{pkcs11.NewMechanism(pkcs11.CKM_RSA_PKCS, nil)} err = session.ctx.SignInit(session.handle, mech, key.handle) if err == nil { signature, err = session.ctx.Sign(session.handle, T) } return } // Sign signs a message using a RSA key. // // This completes the implemention of crypto.Signer for pkcs11PrivateKeyRSA. // // PKCS#11 expects to pick its own random data where necessary for signatures, so the rand argument is ignored. // // Note that (at present) the crypto.rsa.PSSSaltLengthAuto option is // not supported. The caller must either use // crypto.rsa.PSSSaltLengthEqualsHash (recommended) or pass an // explicit salt length. Moreover the underlying PKCS#11 // implementation may impose further restrictions. func (priv *pkcs11PrivateKeyRSA) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) (signature []byte, err error) { err = priv.context.withSession(func(session *pkcs11Session) error { switch opts.(type) { case *rsa.PSSOptions: signature, err = signPSS(session, priv, digest, opts.(*rsa.PSSOptions)) default: /* PKCS1-v1_5 */ signature, err = signPKCS1v15(session, priv, digest, opts.HashFunc()) } return err }) if err != nil { return nil, err } return signature, err }