package face // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. See License.txt in the project root for license information. // // Code generated by Microsoft (R) AutoRest Code Generator. // Changes may cause incorrect behavior and will be lost if the code is regenerated. import ( "context" "github.com/Azure/go-autorest/autorest" "github.com/Azure/go-autorest/autorest/azure" "github.com/Azure/go-autorest/autorest/validation" "github.com/Azure/go-autorest/tracing" "io" "net/http" ) // Client is the an API for face detection, verification, and identification. type Client struct { BaseClient } // NewClient creates an instance of the Client client. func NewClient(endpoint string) Client { return Client{New(endpoint)} } // DetectWithStream detect human faces in an image, return face rectangles, and optionally with faceIds, landmarks, and // attributes.
// * No image will be stored. Only the extracted face feature will be stored on server. The faceId is an identifier of // the face feature and will be used in [Face - // Identify](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/identify), [Face - // Verify](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/verifyfacetoface), and [Face - Find // Similar](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/findsimilar). The stored face feature(s) // will expire and be deleted 24 hours after the original detection call. // * Optional parameters include faceId, landmarks, and attributes. Attributes include age, gender, headPose, smile, // facialHair, glasses, emotion, hair, makeup, occlusion, accessories, blur, exposure and noise. Some of the results // returned for specific attributes may not be highly accurate. // * JPEG, PNG, GIF (the first frame), and BMP format are supported. The allowed image file size is from 1KB to 6MB. // * Up to 100 faces can be returned for an image. Faces are ranked by face rectangle size from large to small. // * For optimal results when querying [Face - // Identify](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/identify), [Face - // Verify](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/verifyfacetoface), and [Face - Find // Similar](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/findsimilar) ('returnFaceId' is true), // please use faces that are: frontal, clear, and with a minimum size of 200x200 pixels (100 pixels between eyes). // * The minimum detectable face size is 36x36 pixels in an image no larger than 1920x1080 pixels. Images with // dimensions higher than 1920x1080 pixels will need a proportionally larger minimum face size. // * Different 'detectionModel' values can be provided. To use and compare different detection models, please refer to // [How to specify a detection // model](https://docs.microsoft.com/azure/cognitive-services/face/face-api-how-to-topics/specify-detection-model) // | Model | Recommended use-case(s) | // | ---------- | -------- | // | 'detection_01': | The default detection model for [Face - // Detect](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/detectwithurl). Recommend for near frontal // face detection. For scenarios with exceptionally large angle (head-pose) faces, occluded faces or wrong image // orientation, the faces in such cases may not be detected. | // | 'detection_02': | Detection model released in 2019 May with improved accuracy especially on small, side and blurry // faces. | // // * Different 'recognitionModel' values are provided. If follow-up operations like Verify, Identify, Find Similar are // needed, please specify the recognition model with 'recognitionModel' parameter. The default value for // 'recognitionModel' is 'recognition_01', if latest model needed, please explicitly specify the model you need in this // parameter. Once specified, the detected faceIds will be associated with the specified recognition model. More // details, please refer to [How to specify a recognition // model](https://docs.microsoft.com/azure/cognitive-services/face/face-api-how-to-topics/specify-recognition-model) // | Model | Recommended use-case(s) | // | ---------- | -------- | // | 'recognition_01': | The default recognition model for [Face - // Detect](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/detectwithurl). All those faceIds created // before 2019 March are bonded with this recognition model. | // | 'recognition_02': | Recognition model released in 2019 March. | // | 'recognition_03': | Recognition model released in 2020 May. 'recognition_03' is recommended since its overall // accuracy is improved compared with 'recognition_01' and 'recognition_02'. | // Parameters: // imageParameter - an image stream. // returnFaceID - a value indicating whether the operation should return faceIds of detected faces. // returnFaceLandmarks - a value indicating whether the operation should return landmarks of the detected // faces. // returnFaceAttributes - analyze and return the one or more specified face attributes in the comma-separated // string like "returnFaceAttributes=age,gender". Supported face attributes include age, gender, headPose, // smile, facialHair, glasses and emotion. Note that each face attribute analysis has additional computational // and time cost. // recognitionModel - name of recognition model. Recognition model is used when the face features are extracted // and associated with detected faceIds, (Large)FaceList or (Large)PersonGroup. A recognition model name can be // provided when performing Face - Detect or (Large)FaceList - Create or (Large)PersonGroup - Create. The // default value is 'recognition_01', if latest model needed, please explicitly specify the model you need. // returnRecognitionModel - a value indicating whether the operation should return 'recognitionModel' in // response. // detectionModel - name of detection model. Detection model is used to detect faces in the submitted image. A // detection model name can be provided when performing Face - Detect or (Large)FaceList - Add Face or // (Large)PersonGroup - Add Face. The default value is 'detection_01', if another model is needed, please // explicitly specify it. func (client Client) DetectWithStream(ctx context.Context, imageParameter io.ReadCloser, returnFaceID *bool, returnFaceLandmarks *bool, returnFaceAttributes []AttributeType, recognitionModel RecognitionModel, returnRecognitionModel *bool, detectionModel DetectionModel) (result ListDetectedFace, err error) { if tracing.IsEnabled() { ctx = tracing.StartSpan(ctx, fqdn+"/Client.DetectWithStream") defer func() { sc := -1 if result.Response.Response != nil { sc = result.Response.Response.StatusCode } tracing.EndSpan(ctx, sc, err) }() } req, err := client.DetectWithStreamPreparer(ctx, imageParameter, returnFaceID, returnFaceLandmarks, returnFaceAttributes, recognitionModel, returnRecognitionModel, detectionModel) if err != nil { err = autorest.NewErrorWithError(err, "face.Client", "DetectWithStream", nil, "Failure preparing request") return } resp, err := client.DetectWithStreamSender(req) if err != nil { result.Response = autorest.Response{Response: resp} err = autorest.NewErrorWithError(err, "face.Client", "DetectWithStream", resp, "Failure sending request") return } result, err = client.DetectWithStreamResponder(resp) if err != nil { err = autorest.NewErrorWithError(err, "face.Client", "DetectWithStream", resp, "Failure responding to request") return } return } // DetectWithStreamPreparer prepares the DetectWithStream request. func (client Client) DetectWithStreamPreparer(ctx context.Context, imageParameter io.ReadCloser, returnFaceID *bool, returnFaceLandmarks *bool, returnFaceAttributes []AttributeType, recognitionModel RecognitionModel, returnRecognitionModel *bool, detectionModel DetectionModel) (*http.Request, error) { urlParameters := map[string]interface{}{ "Endpoint": client.Endpoint, } queryParameters := map[string]interface{}{} if returnFaceID != nil { queryParameters["returnFaceId"] = autorest.Encode("query", *returnFaceID) } else { queryParameters["returnFaceId"] = autorest.Encode("query", true) } if returnFaceLandmarks != nil { queryParameters["returnFaceLandmarks"] = autorest.Encode("query", *returnFaceLandmarks) } else { queryParameters["returnFaceLandmarks"] = autorest.Encode("query", false) } if returnFaceAttributes != nil && len(returnFaceAttributes) > 0 { queryParameters["returnFaceAttributes"] = autorest.Encode("query", returnFaceAttributes, ",") } if len(string(recognitionModel)) > 0 { queryParameters["recognitionModel"] = autorest.Encode("query", recognitionModel) } else { queryParameters["recognitionModel"] = autorest.Encode("query", "recognition_01") } if returnRecognitionModel != nil { queryParameters["returnRecognitionModel"] = autorest.Encode("query", *returnRecognitionModel) } else { queryParameters["returnRecognitionModel"] = autorest.Encode("query", false) } if len(string(detectionModel)) > 0 { queryParameters["detectionModel"] = autorest.Encode("query", detectionModel) } else { queryParameters["detectionModel"] = autorest.Encode("query", "detection_01") } preparer := autorest.CreatePreparer( autorest.AsContentType("application/octet-stream"), autorest.AsPost(), autorest.WithCustomBaseURL("{Endpoint}/face/v1.0", urlParameters), autorest.WithPath("/detect"), autorest.WithFile(imageParameter), autorest.WithQueryParameters(queryParameters)) return preparer.Prepare((&http.Request{}).WithContext(ctx)) } // DetectWithStreamSender sends the DetectWithStream request. The method will close the // http.Response Body if it receives an error. func (client Client) DetectWithStreamSender(req *http.Request) (*http.Response, error) { return client.Send(req, autorest.DoRetryForStatusCodes(client.RetryAttempts, client.RetryDuration, autorest.StatusCodesForRetry...)) } // DetectWithStreamResponder handles the response to the DetectWithStream request. The method always // closes the http.Response Body. func (client Client) DetectWithStreamResponder(resp *http.Response) (result ListDetectedFace, err error) { err = autorest.Respond( resp, azure.WithErrorUnlessStatusCode(http.StatusOK), autorest.ByUnmarshallingJSON(&result.Value), autorest.ByClosing()) result.Response = autorest.Response{Response: resp} return } // DetectWithURL detect human faces in an image, return face rectangles, and optionally with faceIds, landmarks, and // attributes.
// * No image will be stored. Only the extracted face feature will be stored on server. The faceId is an identifier of // the face feature and will be used in [Face - // Identify](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/identify), [Face - // Verify](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/verifyfacetoface), and [Face - Find // Similar](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/findsimilar). The stored face feature(s) // will expire and be deleted 24 hours after the original detection call. // * Optional parameters include faceId, landmarks, and attributes. Attributes include age, gender, headPose, smile, // facialHair, glasses, emotion, hair, makeup, occlusion, accessories, blur, exposure and noise. Some of the results // returned for specific attributes may not be highly accurate. // * JPEG, PNG, GIF (the first frame), and BMP format are supported. The allowed image file size is from 1KB to 6MB. // * Up to 100 faces can be returned for an image. Faces are ranked by face rectangle size from large to small. // * For optimal results when querying [Face - // Identify](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/identify), [Face - // Verify](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/verifyfacetoface), and [Face - Find // Similar](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/findsimilar) ('returnFaceId' is true), // please use faces that are: frontal, clear, and with a minimum size of 200x200 pixels (100 pixels between eyes). // * The minimum detectable face size is 36x36 pixels in an image no larger than 1920x1080 pixels. Images with // dimensions higher than 1920x1080 pixels will need a proportionally larger minimum face size. // * Different 'detectionModel' values can be provided. To use and compare different detection models, please refer to // [How to specify a detection // model](https://docs.microsoft.com/azure/cognitive-services/face/face-api-how-to-topics/specify-detection-model) // | Model | Recommended use-case(s) | // | ---------- | -------- | // | 'detection_01': | The default detection model for [Face - // Detect](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/detectwithurl). Recommend for near frontal // face detection. For scenarios with exceptionally large angle (head-pose) faces, occluded faces or wrong image // orientation, the faces in such cases may not be detected. | // | 'detection_02': | Detection model released in 2019 May with improved accuracy especially on small, side and blurry // faces. | // // * Different 'recognitionModel' values are provided. If follow-up operations like Verify, Identify, Find Similar are // needed, please specify the recognition model with 'recognitionModel' parameter. The default value for // 'recognitionModel' is 'recognition_01', if latest model needed, please explicitly specify the model you need in this // parameter. Once specified, the detected faceIds will be associated with the specified recognition model. More // details, please refer to [How to specify a recognition // model](https://docs.microsoft.com/azure/cognitive-services/face/face-api-how-to-topics/specify-recognition-model) // | Model | Recommended use-case(s) | // | ---------- | -------- | // | 'recognition_01': | The default recognition model for [Face - // Detect](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/detectwithurl). All those faceIds created // before 2019 March are bonded with this recognition model. | // | 'recognition_02': | Recognition model released in 2019 March. | // | 'recognition_03': | Recognition model released in 2020 May. 'recognition_03' is recommended since its overall // accuracy is improved compared with 'recognition_01' and 'recognition_02'. | // Parameters: // imageURL - a JSON document with a URL pointing to the image that is to be analyzed. // returnFaceID - a value indicating whether the operation should return faceIds of detected faces. // returnFaceLandmarks - a value indicating whether the operation should return landmarks of the detected // faces. // returnFaceAttributes - analyze and return the one or more specified face attributes in the comma-separated // string like "returnFaceAttributes=age,gender". Supported face attributes include age, gender, headPose, // smile, facialHair, glasses and emotion. Note that each face attribute analysis has additional computational // and time cost. // recognitionModel - name of recognition model. Recognition model is used when the face features are extracted // and associated with detected faceIds, (Large)FaceList or (Large)PersonGroup. A recognition model name can be // provided when performing Face - Detect or (Large)FaceList - Create or (Large)PersonGroup - Create. The // default value is 'recognition_01', if latest model needed, please explicitly specify the model you need. // returnRecognitionModel - a value indicating whether the operation should return 'recognitionModel' in // response. // detectionModel - name of detection model. Detection model is used to detect faces in the submitted image. A // detection model name can be provided when performing Face - Detect or (Large)FaceList - Add Face or // (Large)PersonGroup - Add Face. The default value is 'detection_01', if another model is needed, please // explicitly specify it. func (client Client) DetectWithURL(ctx context.Context, imageURL ImageURL, returnFaceID *bool, returnFaceLandmarks *bool, returnFaceAttributes []AttributeType, recognitionModel RecognitionModel, returnRecognitionModel *bool, detectionModel DetectionModel) (result ListDetectedFace, err error) { if tracing.IsEnabled() { ctx = tracing.StartSpan(ctx, fqdn+"/Client.DetectWithURL") defer func() { sc := -1 if result.Response.Response != nil { sc = result.Response.Response.StatusCode } tracing.EndSpan(ctx, sc, err) }() } if err := validation.Validate([]validation.Validation{ {TargetValue: imageURL, Constraints: []validation.Constraint{{Target: "imageURL.URL", Name: validation.Null, Rule: true, Chain: nil}}}}); err != nil { return result, validation.NewError("face.Client", "DetectWithURL", err.Error()) } req, err := client.DetectWithURLPreparer(ctx, imageURL, returnFaceID, returnFaceLandmarks, returnFaceAttributes, recognitionModel, returnRecognitionModel, detectionModel) if err != nil { err = autorest.NewErrorWithError(err, "face.Client", "DetectWithURL", nil, "Failure preparing request") return } resp, err := client.DetectWithURLSender(req) if err != nil { result.Response = autorest.Response{Response: resp} err = autorest.NewErrorWithError(err, "face.Client", "DetectWithURL", resp, "Failure sending request") return } result, err = client.DetectWithURLResponder(resp) if err != nil { err = autorest.NewErrorWithError(err, "face.Client", "DetectWithURL", resp, "Failure responding to request") return } return } // DetectWithURLPreparer prepares the DetectWithURL request. func (client Client) DetectWithURLPreparer(ctx context.Context, imageURL ImageURL, returnFaceID *bool, returnFaceLandmarks *bool, returnFaceAttributes []AttributeType, recognitionModel RecognitionModel, returnRecognitionModel *bool, detectionModel DetectionModel) (*http.Request, error) { urlParameters := map[string]interface{}{ "Endpoint": client.Endpoint, } queryParameters := map[string]interface{}{} if returnFaceID != nil { queryParameters["returnFaceId"] = autorest.Encode("query", *returnFaceID) } else { queryParameters["returnFaceId"] = autorest.Encode("query", true) } if returnFaceLandmarks != nil { queryParameters["returnFaceLandmarks"] = autorest.Encode("query", *returnFaceLandmarks) } else { queryParameters["returnFaceLandmarks"] = autorest.Encode("query", false) } if returnFaceAttributes != nil && len(returnFaceAttributes) > 0 { queryParameters["returnFaceAttributes"] = autorest.Encode("query", returnFaceAttributes, ",") } if len(string(recognitionModel)) > 0 { queryParameters["recognitionModel"] = autorest.Encode("query", recognitionModel) } else { queryParameters["recognitionModel"] = autorest.Encode("query", "recognition_01") } if returnRecognitionModel != nil { queryParameters["returnRecognitionModel"] = autorest.Encode("query", *returnRecognitionModel) } else { queryParameters["returnRecognitionModel"] = autorest.Encode("query", false) } if len(string(detectionModel)) > 0 { queryParameters["detectionModel"] = autorest.Encode("query", detectionModel) } else { queryParameters["detectionModel"] = autorest.Encode("query", "detection_01") } preparer := autorest.CreatePreparer( autorest.AsContentType("application/json; charset=utf-8"), autorest.AsPost(), autorest.WithCustomBaseURL("{Endpoint}/face/v1.0", urlParameters), autorest.WithPath("/detect"), autorest.WithJSON(imageURL), autorest.WithQueryParameters(queryParameters)) return preparer.Prepare((&http.Request{}).WithContext(ctx)) } // DetectWithURLSender sends the DetectWithURL request. The method will close the // http.Response Body if it receives an error. func (client Client) DetectWithURLSender(req *http.Request) (*http.Response, error) { return client.Send(req, autorest.DoRetryForStatusCodes(client.RetryAttempts, client.RetryDuration, autorest.StatusCodesForRetry...)) } // DetectWithURLResponder handles the response to the DetectWithURL request. The method always // closes the http.Response Body. func (client Client) DetectWithURLResponder(resp *http.Response) (result ListDetectedFace, err error) { err = autorest.Respond( resp, azure.WithErrorUnlessStatusCode(http.StatusOK), autorest.ByUnmarshallingJSON(&result.Value), autorest.ByClosing()) result.Response = autorest.Response{Response: resp} return } // FindSimilar given query face's faceId, to search the similar-looking faces from a faceId array, a face list or a // large face list. faceId array contains the faces created by [Face - // Detect](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/detectwithurl), which will expire 24 hours // after creation. A "faceListId" is created by [FaceList - // Create](https://docs.microsoft.com/rest/api/cognitiveservices/face/facelist/create) containing persistedFaceIds that // will not expire. And a "largeFaceListId" is created by [LargeFaceList - // Create](https://docs.microsoft.com/rest/api/cognitiveservices/face/largefacelist/create) containing persistedFaceIds // that will also not expire. Depending on the input the returned similar faces list contains faceIds or // persistedFaceIds ranked by similarity. //
Find similar has two working modes, "matchPerson" and "matchFace". "matchPerson" is the default mode that it // tries to find faces of the same person as possible by using internal same-person thresholds. It is useful to find a // known person's other photos. Note that an empty list will be returned if no faces pass the internal thresholds. // "matchFace" mode ignores same-person thresholds and returns ranked similar faces anyway, even the similarity is low. // It can be used in the cases like searching celebrity-looking faces. //
The 'recognitionModel' associated with the query face's faceId should be the same as the 'recognitionModel' // used by the target faceId array, face list or large face list. // Parameters: // body - request body for Find Similar. func (client Client) FindSimilar(ctx context.Context, body FindSimilarRequest) (result ListSimilarFace, err error) { if tracing.IsEnabled() { ctx = tracing.StartSpan(ctx, fqdn+"/Client.FindSimilar") defer func() { sc := -1 if result.Response.Response != nil { sc = result.Response.Response.StatusCode } tracing.EndSpan(ctx, sc, err) }() } if err := validation.Validate([]validation.Validation{ {TargetValue: body, Constraints: []validation.Constraint{{Target: "body.FaceID", Name: validation.Null, Rule: true, Chain: nil}, {Target: "body.FaceListID", Name: validation.Null, Rule: false, Chain: []validation.Constraint{{Target: "body.FaceListID", Name: validation.MaxLength, Rule: 64, Chain: nil}, {Target: "body.FaceListID", Name: validation.Pattern, Rule: `^[a-z0-9-_]+$`, Chain: nil}, }}, {Target: "body.LargeFaceListID", Name: validation.Null, Rule: false, Chain: []validation.Constraint{{Target: "body.LargeFaceListID", Name: validation.MaxLength, Rule: 64, Chain: nil}, {Target: "body.LargeFaceListID", Name: validation.Pattern, Rule: `^[a-z0-9-_]+$`, Chain: nil}, }}, {Target: "body.FaceIds", Name: validation.Null, Rule: false, Chain: []validation.Constraint{{Target: "body.FaceIds", Name: validation.MaxItems, Rule: 1000, Chain: nil}}}, {Target: "body.MaxNumOfCandidatesReturned", Name: validation.Null, Rule: false, Chain: []validation.Constraint{{Target: "body.MaxNumOfCandidatesReturned", Name: validation.InclusiveMaximum, Rule: int64(1000), Chain: nil}, {Target: "body.MaxNumOfCandidatesReturned", Name: validation.InclusiveMinimum, Rule: int64(1), Chain: nil}, }}}}}); err != nil { return result, validation.NewError("face.Client", "FindSimilar", err.Error()) } req, err := client.FindSimilarPreparer(ctx, body) if err != nil { err = autorest.NewErrorWithError(err, "face.Client", "FindSimilar", nil, "Failure preparing request") return } resp, err := client.FindSimilarSender(req) if err != nil { result.Response = autorest.Response{Response: resp} err = autorest.NewErrorWithError(err, "face.Client", "FindSimilar", resp, "Failure sending request") return } result, err = client.FindSimilarResponder(resp) if err != nil { err = autorest.NewErrorWithError(err, "face.Client", "FindSimilar", resp, "Failure responding to request") return } return } // FindSimilarPreparer prepares the FindSimilar request. func (client Client) FindSimilarPreparer(ctx context.Context, body FindSimilarRequest) (*http.Request, error) { urlParameters := map[string]interface{}{ "Endpoint": client.Endpoint, } preparer := autorest.CreatePreparer( autorest.AsContentType("application/json; charset=utf-8"), autorest.AsPost(), autorest.WithCustomBaseURL("{Endpoint}/face/v1.0", urlParameters), autorest.WithPath("/findsimilars"), autorest.WithJSON(body)) return preparer.Prepare((&http.Request{}).WithContext(ctx)) } // FindSimilarSender sends the FindSimilar request. The method will close the // http.Response Body if it receives an error. func (client Client) FindSimilarSender(req *http.Request) (*http.Response, error) { return client.Send(req, autorest.DoRetryForStatusCodes(client.RetryAttempts, client.RetryDuration, autorest.StatusCodesForRetry...)) } // FindSimilarResponder handles the response to the FindSimilar request. The method always // closes the http.Response Body. func (client Client) FindSimilarResponder(resp *http.Response) (result ListSimilarFace, err error) { err = autorest.Respond( resp, azure.WithErrorUnlessStatusCode(http.StatusOK), autorest.ByUnmarshallingJSON(&result.Value), autorest.ByClosing()) result.Response = autorest.Response{Response: resp} return } // Group divide candidate faces into groups based on face similarity.
// * The output is one or more disjointed face groups and a messyGroup. A face group contains faces that have similar // looking, often of the same person. Face groups are ranked by group size, i.e. number of faces. Notice that faces // belonging to a same person might be split into several groups in the result. // * MessyGroup is a special face group containing faces that cannot find any similar counterpart face from original // faces. The messyGroup will not appear in the result if all faces found their counterparts. // * Group API needs at least 2 candidate faces and 1000 at most. We suggest to try [Face - // Verify](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/verifyfacetoface) when you only have 2 // candidate faces. // * The 'recognitionModel' associated with the query faces' faceIds should be the same. // Parameters: // body - request body for grouping. func (client Client) Group(ctx context.Context, body GroupRequest) (result GroupResult, err error) { if tracing.IsEnabled() { ctx = tracing.StartSpan(ctx, fqdn+"/Client.Group") defer func() { sc := -1 if result.Response.Response != nil { sc = result.Response.Response.StatusCode } tracing.EndSpan(ctx, sc, err) }() } if err := validation.Validate([]validation.Validation{ {TargetValue: body, Constraints: []validation.Constraint{{Target: "body.FaceIds", Name: validation.Null, Rule: true, Chain: []validation.Constraint{{Target: "body.FaceIds", Name: validation.MaxItems, Rule: 1000, Chain: nil}}}}}}); err != nil { return result, validation.NewError("face.Client", "Group", err.Error()) } req, err := client.GroupPreparer(ctx, body) if err != nil { err = autorest.NewErrorWithError(err, "face.Client", "Group", nil, "Failure preparing request") return } resp, err := client.GroupSender(req) if err != nil { result.Response = autorest.Response{Response: resp} err = autorest.NewErrorWithError(err, "face.Client", "Group", resp, "Failure sending request") return } result, err = client.GroupResponder(resp) if err != nil { err = autorest.NewErrorWithError(err, "face.Client", "Group", resp, "Failure responding to request") return } return } // GroupPreparer prepares the Group request. func (client Client) GroupPreparer(ctx context.Context, body GroupRequest) (*http.Request, error) { urlParameters := map[string]interface{}{ "Endpoint": client.Endpoint, } preparer := autorest.CreatePreparer( autorest.AsContentType("application/json; charset=utf-8"), autorest.AsPost(), autorest.WithCustomBaseURL("{Endpoint}/face/v1.0", urlParameters), autorest.WithPath("/group"), autorest.WithJSON(body)) return preparer.Prepare((&http.Request{}).WithContext(ctx)) } // GroupSender sends the Group request. The method will close the // http.Response Body if it receives an error. func (client Client) GroupSender(req *http.Request) (*http.Response, error) { return client.Send(req, autorest.DoRetryForStatusCodes(client.RetryAttempts, client.RetryDuration, autorest.StatusCodesForRetry...)) } // GroupResponder handles the response to the Group request. The method always // closes the http.Response Body. func (client Client) GroupResponder(resp *http.Response) (result GroupResult, err error) { err = autorest.Respond( resp, azure.WithErrorUnlessStatusCode(http.StatusOK), autorest.ByUnmarshallingJSON(&result), autorest.ByClosing()) result.Response = autorest.Response{Response: resp} return } // Identify 1-to-many identification to find the closest matches of the specific query person face from a person group // or large person group. //
For each face in the faceIds array, Face Identify will compute similarities between the query face and all the // faces in the person group (given by personGroupId) or large person group (given by largePersonGroupId), and return // candidate person(s) for that face ranked by similarity confidence. The person group/large person group should be // trained to make it ready for identification. See more in [PersonGroup - // Train](https://docs.microsoft.com/rest/api/cognitiveservices/face/persongroup/train) and [LargePersonGroup - // Train](https://docs.microsoft.com/rest/api/cognitiveservices/face/largepersongroup/train). //
// // Remarks:
// * The algorithm allows more than one face to be identified independently at the same request, but no more than 10 // faces. // * Each person in the person group/large person group could have more than one face, but no more than 248 faces. // * Higher face image quality means better identification precision. Please consider high-quality faces: frontal, // clear, and face size is 200x200 pixels (100 pixels between eyes) or bigger. // * Number of candidates returned is restricted by maxNumOfCandidatesReturned and confidenceThreshold. If no person is // identified, the returned candidates will be an empty array. // * Try [Face - Find Similar](https://docs.microsoft.com/rest/api/cognitiveservices/face/face/findsimilar) when you // need to find similar faces from a face list/large face list instead of a person group/large person group. // * The 'recognitionModel' associated with the query faces' faceIds should be the same as the 'recognitionModel' used // by the target person group or large person group. // Parameters: // body - request body for identify operation. func (client Client) Identify(ctx context.Context, body IdentifyRequest) (result ListIdentifyResult, err error) { if tracing.IsEnabled() { ctx = tracing.StartSpan(ctx, fqdn+"/Client.Identify") defer func() { sc := -1 if result.Response.Response != nil { sc = result.Response.Response.StatusCode } tracing.EndSpan(ctx, sc, err) }() } if err := validation.Validate([]validation.Validation{ {TargetValue: body, Constraints: []validation.Constraint{{Target: "body.FaceIds", Name: validation.Null, Rule: true, Chain: []validation.Constraint{{Target: "body.FaceIds", Name: validation.MaxItems, Rule: 10, Chain: nil}}}, {Target: "body.PersonGroupID", Name: validation.Null, Rule: false, Chain: []validation.Constraint{{Target: "body.PersonGroupID", Name: validation.MaxLength, Rule: 64, Chain: nil}, {Target: "body.PersonGroupID", Name: validation.Pattern, Rule: `^[a-z0-9-_]+$`, Chain: nil}, }}, {Target: "body.LargePersonGroupID", Name: validation.Null, Rule: false, Chain: []validation.Constraint{{Target: "body.LargePersonGroupID", Name: validation.MaxLength, Rule: 64, Chain: nil}, {Target: "body.LargePersonGroupID", Name: validation.Pattern, Rule: `^[a-z0-9-_]+$`, Chain: nil}, }}, {Target: "body.MaxNumOfCandidatesReturned", Name: validation.Null, Rule: false, Chain: []validation.Constraint{{Target: "body.MaxNumOfCandidatesReturned", Name: validation.InclusiveMaximum, Rule: int64(5), Chain: nil}, {Target: "body.MaxNumOfCandidatesReturned", Name: validation.InclusiveMinimum, Rule: int64(1), Chain: nil}, }}}}}); err != nil { return result, validation.NewError("face.Client", "Identify", err.Error()) } req, err := client.IdentifyPreparer(ctx, body) if err != nil { err = autorest.NewErrorWithError(err, "face.Client", "Identify", nil, "Failure preparing request") return } resp, err := client.IdentifySender(req) if err != nil { result.Response = autorest.Response{Response: resp} err = autorest.NewErrorWithError(err, "face.Client", "Identify", resp, "Failure sending request") return } result, err = client.IdentifyResponder(resp) if err != nil { err = autorest.NewErrorWithError(err, "face.Client", "Identify", resp, "Failure responding to request") return } return } // IdentifyPreparer prepares the Identify request. func (client Client) IdentifyPreparer(ctx context.Context, body IdentifyRequest) (*http.Request, error) { urlParameters := map[string]interface{}{ "Endpoint": client.Endpoint, } preparer := autorest.CreatePreparer( autorest.AsContentType("application/json; charset=utf-8"), autorest.AsPost(), autorest.WithCustomBaseURL("{Endpoint}/face/v1.0", urlParameters), autorest.WithPath("/identify"), autorest.WithJSON(body)) return preparer.Prepare((&http.Request{}).WithContext(ctx)) } // IdentifySender sends the Identify request. The method will close the // http.Response Body if it receives an error. func (client Client) IdentifySender(req *http.Request) (*http.Response, error) { return client.Send(req, autorest.DoRetryForStatusCodes(client.RetryAttempts, client.RetryDuration, autorest.StatusCodesForRetry...)) } // IdentifyResponder handles the response to the Identify request. The method always // closes the http.Response Body. func (client Client) IdentifyResponder(resp *http.Response) (result ListIdentifyResult, err error) { err = autorest.Respond( resp, azure.WithErrorUnlessStatusCode(http.StatusOK), autorest.ByUnmarshallingJSON(&result.Value), autorest.ByClosing()) result.Response = autorest.Response{Response: resp} return } // VerifyFaceToFace verify whether two faces belong to a same person or whether one face belongs to a person. //
// Remarks:
// * Higher face image quality means better identification precision. Please consider high-quality faces: frontal, // clear, and face size is 200x200 pixels (100 pixels between eyes) or bigger. // * For the scenarios that are sensitive to accuracy please make your own judgment. // * The 'recognitionModel' associated with the query faces' faceIds should be the same as the 'recognitionModel' used // by the target face, person group or large person group. // Parameters: // body - request body for face to face verification. func (client Client) VerifyFaceToFace(ctx context.Context, body VerifyFaceToFaceRequest) (result VerifyResult, err error) { if tracing.IsEnabled() { ctx = tracing.StartSpan(ctx, fqdn+"/Client.VerifyFaceToFace") defer func() { sc := -1 if result.Response.Response != nil { sc = result.Response.Response.StatusCode } tracing.EndSpan(ctx, sc, err) }() } if err := validation.Validate([]validation.Validation{ {TargetValue: body, Constraints: []validation.Constraint{{Target: "body.FaceID1", Name: validation.Null, Rule: true, Chain: nil}, {Target: "body.FaceID2", Name: validation.Null, Rule: true, Chain: nil}}}}); err != nil { return result, validation.NewError("face.Client", "VerifyFaceToFace", err.Error()) } req, err := client.VerifyFaceToFacePreparer(ctx, body) if err != nil { err = autorest.NewErrorWithError(err, "face.Client", "VerifyFaceToFace", nil, "Failure preparing request") return } resp, err := client.VerifyFaceToFaceSender(req) if err != nil { result.Response = autorest.Response{Response: resp} err = autorest.NewErrorWithError(err, "face.Client", "VerifyFaceToFace", resp, "Failure sending request") return } result, err = client.VerifyFaceToFaceResponder(resp) if err != nil { err = autorest.NewErrorWithError(err, "face.Client", "VerifyFaceToFace", resp, "Failure responding to request") return } return } // VerifyFaceToFacePreparer prepares the VerifyFaceToFace request. func (client Client) VerifyFaceToFacePreparer(ctx context.Context, body VerifyFaceToFaceRequest) (*http.Request, error) { urlParameters := map[string]interface{}{ "Endpoint": client.Endpoint, } preparer := autorest.CreatePreparer( autorest.AsContentType("application/json; charset=utf-8"), autorest.AsPost(), autorest.WithCustomBaseURL("{Endpoint}/face/v1.0", urlParameters), autorest.WithPath("/verify"), autorest.WithJSON(body)) return preparer.Prepare((&http.Request{}).WithContext(ctx)) } // VerifyFaceToFaceSender sends the VerifyFaceToFace request. The method will close the // http.Response Body if it receives an error. func (client Client) VerifyFaceToFaceSender(req *http.Request) (*http.Response, error) { return client.Send(req, autorest.DoRetryForStatusCodes(client.RetryAttempts, client.RetryDuration, autorest.StatusCodesForRetry...)) } // VerifyFaceToFaceResponder handles the response to the VerifyFaceToFace request. The method always // closes the http.Response Body. func (client Client) VerifyFaceToFaceResponder(resp *http.Response) (result VerifyResult, err error) { err = autorest.Respond( resp, azure.WithErrorUnlessStatusCode(http.StatusOK), autorest.ByUnmarshallingJSON(&result), autorest.ByClosing()) result.Response = autorest.Response{Response: resp} return } // VerifyFaceToPerson verify whether two faces belong to a same person. Compares a face Id with a Person Id // Parameters: // body - request body for face to person verification. func (client Client) VerifyFaceToPerson(ctx context.Context, body VerifyFaceToPersonRequest) (result VerifyResult, err error) { if tracing.IsEnabled() { ctx = tracing.StartSpan(ctx, fqdn+"/Client.VerifyFaceToPerson") defer func() { sc := -1 if result.Response.Response != nil { sc = result.Response.Response.StatusCode } tracing.EndSpan(ctx, sc, err) }() } if err := validation.Validate([]validation.Validation{ {TargetValue: body, Constraints: []validation.Constraint{{Target: "body.FaceID", Name: validation.Null, Rule: true, Chain: nil}, {Target: "body.PersonGroupID", Name: validation.Null, Rule: false, Chain: []validation.Constraint{{Target: "body.PersonGroupID", Name: validation.MaxLength, Rule: 64, Chain: nil}, {Target: "body.PersonGroupID", Name: validation.Pattern, Rule: `^[a-z0-9-_]+$`, Chain: nil}, }}, {Target: "body.LargePersonGroupID", Name: validation.Null, Rule: false, Chain: []validation.Constraint{{Target: "body.LargePersonGroupID", Name: validation.MaxLength, Rule: 64, Chain: nil}, {Target: "body.LargePersonGroupID", Name: validation.Pattern, Rule: `^[a-z0-9-_]+$`, Chain: nil}, }}, {Target: "body.PersonID", Name: validation.Null, Rule: true, Chain: nil}}}}); err != nil { return result, validation.NewError("face.Client", "VerifyFaceToPerson", err.Error()) } req, err := client.VerifyFaceToPersonPreparer(ctx, body) if err != nil { err = autorest.NewErrorWithError(err, "face.Client", "VerifyFaceToPerson", nil, "Failure preparing request") return } resp, err := client.VerifyFaceToPersonSender(req) if err != nil { result.Response = autorest.Response{Response: resp} err = autorest.NewErrorWithError(err, "face.Client", "VerifyFaceToPerson", resp, "Failure sending request") return } result, err = client.VerifyFaceToPersonResponder(resp) if err != nil { err = autorest.NewErrorWithError(err, "face.Client", "VerifyFaceToPerson", resp, "Failure responding to request") return } return } // VerifyFaceToPersonPreparer prepares the VerifyFaceToPerson request. func (client Client) VerifyFaceToPersonPreparer(ctx context.Context, body VerifyFaceToPersonRequest) (*http.Request, error) { urlParameters := map[string]interface{}{ "Endpoint": client.Endpoint, } preparer := autorest.CreatePreparer( autorest.AsContentType("application/json; charset=utf-8"), autorest.AsPost(), autorest.WithCustomBaseURL("{Endpoint}/face/v1.0", urlParameters), autorest.WithPath("/verify"), autorest.WithJSON(body)) return preparer.Prepare((&http.Request{}).WithContext(ctx)) } // VerifyFaceToPersonSender sends the VerifyFaceToPerson request. The method will close the // http.Response Body if it receives an error. func (client Client) VerifyFaceToPersonSender(req *http.Request) (*http.Response, error) { return client.Send(req, autorest.DoRetryForStatusCodes(client.RetryAttempts, client.RetryDuration, autorest.StatusCodesForRetry...)) } // VerifyFaceToPersonResponder handles the response to the VerifyFaceToPerson request. The method always // closes the http.Response Body. func (client Client) VerifyFaceToPersonResponder(resp *http.Response) (result VerifyResult, err error) { err = autorest.Respond( resp, azure.WithErrorUnlessStatusCode(http.StatusOK), autorest.ByUnmarshallingJSON(&result), autorest.ByClosing()) result.Response = autorest.Response{Response: resp} return }