// Copyright 2020 CUE Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package literal import ( "cuelang.org/go/cue/errors" "cuelang.org/go/cue/token" "github.com/cockroachdb/apd/v3" ) // We avoid cuelang.org/go/internal.Context as that would be an import cycle. var baseContext apd.Context func init() { baseContext = apd.BaseContext baseContext.Precision = 34 } // NumInfo contains information about a parsed numbers. // // Reusing a NumInfo across parses may avoid memory allocations. type NumInfo struct { pos token.Pos src string p int ch byte buf []byte mul Multiplier base byte neg bool UseSep bool isFloat bool err error } // String returns a canonical string representation of the number so that // it can be parsed with math.Float.Parse. func (p *NumInfo) String() string { if len(p.buf) > 0 && p.base == 10 && p.mul == 0 { return string(p.buf) } var d apd.Decimal _ = p.decimal(&d) return d.String() } type decimal = apd.Decimal // Decimal is for internal use. func (p *NumInfo) Decimal(v *decimal) error { return p.decimal(v) } func (p *NumInfo) decimal(v *apd.Decimal) error { if p.base != 10 { _, _, _ = v.SetString("0") b := p.buf if p.buf[0] == '-' { v.Negative = p.neg b = p.buf[1:] } v.Coeff.SetString(string(b), int(p.base)) return nil } _ = v.UnmarshalText(p.buf) if p.mul != 0 { _, _ = baseContext.Mul(v, v, mulToRat[p.mul]) cond, _ := baseContext.RoundToIntegralExact(v, v) if cond.Inexact() { return p.errorf("number cannot be represented as int") } } return nil } // Multiplier reports which multiplier was used in an integral number. func (p *NumInfo) Multiplier() Multiplier { return p.mul } // IsInt reports whether the number is an integral number. func (p *NumInfo) IsInt() bool { return !p.isFloat } // ParseNum parses s and populates NumInfo with the result. func ParseNum(s string, n *NumInfo) error { *n = NumInfo{pos: n.pos, src: s, buf: n.buf[:0]} if !n.next() { return n.errorf("invalid number %q", s) } if n.ch == '-' { n.neg = true n.buf = append(n.buf, '-') n.next() } seenDecimalPoint := false if n.ch == '.' { n.next() seenDecimalPoint = true } err := n.scanNumber(seenDecimalPoint) if err != nil { return err } if n.err != nil { return n.err } if n.p < len(n.src) { return n.errorf("invalid number %q", s) } if len(n.buf) == 0 { n.buf = append(n.buf, '0') } return nil } func (p *NumInfo) errorf(format string, args ...interface{}) error { return errors.Newf(p.pos, format, args...) } // A Multiplier indicates a multiplier indicator used in the literal. type Multiplier byte const ( mul1 Multiplier = 1 + iota mul2 mul3 mul4 mul5 mul6 mul7 mul8 mulBin = 0x10 mulDec = 0x20 K = mulDec | mul1 M = mulDec | mul2 G = mulDec | mul3 T = mulDec | mul4 P = mulDec | mul5 E = mulDec | mul6 Z = mulDec | mul7 Y = mulDec | mul8 Ki = mulBin | mul1 Mi = mulBin | mul2 Gi = mulBin | mul3 Ti = mulBin | mul4 Pi = mulBin | mul5 Ei = mulBin | mul6 Zi = mulBin | mul7 Yi = mulBin | mul8 ) func (p *NumInfo) next() bool { if p.p >= len(p.src) { p.ch = 0 return false } p.ch = p.src[p.p] p.p++ if p.ch == '.' { if len(p.buf) == 0 { p.buf = append(p.buf, '0') } p.buf = append(p.buf, '.') } return true } func (p *NumInfo) digitVal(ch byte) (d int) { switch { case '0' <= ch && ch <= '9': d = int(ch - '0') case ch == '_': p.UseSep = true return 0 case 'a' <= ch && ch <= 'f': d = int(ch - 'a' + 10) case 'A' <= ch && ch <= 'F': d = int(ch - 'A' + 10) default: return 16 // larger than any legal digit val } return d } func (p *NumInfo) scanMantissa(base int) bool { hasDigit := false var last byte for p.digitVal(p.ch) < base { if p.ch != '_' { p.buf = append(p.buf, p.ch) hasDigit = true } last = p.ch p.next() } if last == '_' { p.err = p.errorf("illegal '_' in number") } return hasDigit } func (p *NumInfo) scanNumber(seenDecimalPoint bool) error { p.base = 10 if seenDecimalPoint { p.isFloat = true if !p.scanMantissa(10) { return p.errorf("illegal fraction %q", p.src) } goto exponent } if p.ch == '0' { // int or float p.next() switch p.ch { case 'x', 'X': p.base = 16 // hexadecimal int p.next() if !p.scanMantissa(16) { // only scanned "0x" or "0X" return p.errorf("illegal hexadecimal number %q", p.src) } case 'b': p.base = 2 // binary int p.next() if !p.scanMantissa(2) { // only scanned "0b" return p.errorf("illegal binary number %q", p.src) } case 'o': p.base = 8 // octal int p.next() if !p.scanMantissa(8) { // only scanned "0o" return p.errorf("illegal octal number %q", p.src) } default: // int (base 8 or 10) or float p.scanMantissa(8) if p.ch == '8' || p.ch == '9' { p.scanMantissa(10) if p.ch != '.' && p.ch != 'e' && p.ch != 'E' { return p.errorf("illegal integer number %q", p.src) } } switch p.ch { case 'e', 'E': if len(p.buf) == 0 { p.buf = append(p.buf, '0') } fallthrough case '.': goto fraction } if len(p.buf) > 0 { p.base = 8 } } goto exit } // decimal int or float if !p.scanMantissa(10) { return p.errorf("illegal number start %q", p.src) } fraction: if p.ch == '.' { p.isFloat = true p.next() p.scanMantissa(10) } exponent: switch p.ch { case 'K', 'M', 'G', 'T', 'P': p.mul = charToMul[p.ch] p.next() if p.ch == 'i' { p.mul |= mulBin p.next() } else { p.mul |= mulDec } var v apd.Decimal p.isFloat = false return p.decimal(&v) case 'e', 'E': p.isFloat = true p.next() p.buf = append(p.buf, 'e') if p.ch == '-' || p.ch == '+' { p.buf = append(p.buf, p.ch) p.next() } if !p.scanMantissa(10) { return p.errorf("illegal exponent %q", p.src) } } exit: return nil } var charToMul = map[byte]Multiplier{ 'K': mul1, 'M': mul2, 'G': mul3, 'T': mul4, 'P': mul5, 'E': mul6, 'Z': mul7, 'Y': mul8, } var mulToRat = map[Multiplier]*apd.Decimal{} func init() { d := apd.New(1, 0) b := apd.New(1, 0) dm := apd.New(1000, 0) bm := apd.New(1024, 0) c := apd.BaseContext for i := Multiplier(1); int(i) < len(charToMul); i++ { // TODO: may we write to one of the sources? var bn, dn apd.Decimal _, _ = c.Mul(&dn, d, dm) d = &dn _, _ = c.Mul(&bn, b, bm) b = &bn mulToRat[mulDec|i] = d mulToRat[mulBin|i] = b } }