...

Package bigquery

import "google.golang.org/genproto/googleapis/cloud/bigquery/v2"
Overview
Index

Overview ▾

Index ▾

Variables
func RegisterModelServiceServer(s *grpc.Server, srv ModelServiceServer)
type DeleteModelRequest
    func (*DeleteModelRequest) Descriptor() ([]byte, []int)
    func (x *DeleteModelRequest) GetDatasetId() string
    func (x *DeleteModelRequest) GetModelId() string
    func (x *DeleteModelRequest) GetProjectId() string
    func (*DeleteModelRequest) ProtoMessage()
    func (x *DeleteModelRequest) ProtoReflect() protoreflect.Message
    func (x *DeleteModelRequest) Reset()
    func (x *DeleteModelRequest) String() string
type EncryptionConfiguration
    func (*EncryptionConfiguration) Descriptor() ([]byte, []int)
    func (x *EncryptionConfiguration) GetKmsKeyName() *wrapperspb.StringValue
    func (*EncryptionConfiguration) ProtoMessage()
    func (x *EncryptionConfiguration) ProtoReflect() protoreflect.Message
    func (x *EncryptionConfiguration) Reset()
    func (x *EncryptionConfiguration) String() string
type GetModelRequest
    func (*GetModelRequest) Descriptor() ([]byte, []int)
    func (x *GetModelRequest) GetDatasetId() string
    func (x *GetModelRequest) GetModelId() string
    func (x *GetModelRequest) GetProjectId() string
    func (*GetModelRequest) ProtoMessage()
    func (x *GetModelRequest) ProtoReflect() protoreflect.Message
    func (x *GetModelRequest) Reset()
    func (x *GetModelRequest) String() string
type ListModelsRequest
    func (*ListModelsRequest) Descriptor() ([]byte, []int)
    func (x *ListModelsRequest) GetDatasetId() string
    func (x *ListModelsRequest) GetMaxResults() *wrapperspb.UInt32Value
    func (x *ListModelsRequest) GetPageToken() string
    func (x *ListModelsRequest) GetProjectId() string
    func (*ListModelsRequest) ProtoMessage()
    func (x *ListModelsRequest) ProtoReflect() protoreflect.Message
    func (x *ListModelsRequest) Reset()
    func (x *ListModelsRequest) String() string
type ListModelsResponse
    func (*ListModelsResponse) Descriptor() ([]byte, []int)
    func (x *ListModelsResponse) GetModels() []*Model
    func (x *ListModelsResponse) GetNextPageToken() string
    func (*ListModelsResponse) ProtoMessage()
    func (x *ListModelsResponse) ProtoReflect() protoreflect.Message
    func (x *ListModelsResponse) Reset()
    func (x *ListModelsResponse) String() string
type Model
    func (*Model) Descriptor() ([]byte, []int)
    func (x *Model) GetBestTrialId() int64
    func (x *Model) GetCreationTime() int64
    func (x *Model) GetDescription() string
    func (x *Model) GetEncryptionConfiguration() *EncryptionConfiguration
    func (x *Model) GetEtag() string
    func (x *Model) GetExpirationTime() int64
    func (x *Model) GetFeatureColumns() []*StandardSqlField
    func (x *Model) GetFriendlyName() string
    func (x *Model) GetLabelColumns() []*StandardSqlField
    func (x *Model) GetLabels() map[string]string
    func (x *Model) GetLastModifiedTime() int64
    func (x *Model) GetLocation() string
    func (x *Model) GetModelReference() *ModelReference
    func (x *Model) GetModelType() Model_ModelType
    func (x *Model) GetTrainingRuns() []*Model_TrainingRun
    func (*Model) ProtoMessage()
    func (x *Model) ProtoReflect() protoreflect.Message
    func (x *Model) Reset()
    func (x *Model) String() string
type ModelReference
    func (*ModelReference) Descriptor() ([]byte, []int)
    func (x *ModelReference) GetDatasetId() string
    func (x *ModelReference) GetModelId() string
    func (x *ModelReference) GetProjectId() string
    func (*ModelReference) ProtoMessage()
    func (x *ModelReference) ProtoReflect() protoreflect.Message
    func (x *ModelReference) Reset()
    func (x *ModelReference) String() string
type ModelServiceClient
    func NewModelServiceClient(cc grpc.ClientConnInterface) ModelServiceClient
type ModelServiceServer
type Model_AggregateClassificationMetrics
    func (*Model_AggregateClassificationMetrics) Descriptor() ([]byte, []int)
    func (x *Model_AggregateClassificationMetrics) GetAccuracy() *wrapperspb.DoubleValue
    func (x *Model_AggregateClassificationMetrics) GetF1Score() *wrapperspb.DoubleValue
    func (x *Model_AggregateClassificationMetrics) GetLogLoss() *wrapperspb.DoubleValue
    func (x *Model_AggregateClassificationMetrics) GetPrecision() *wrapperspb.DoubleValue
    func (x *Model_AggregateClassificationMetrics) GetRecall() *wrapperspb.DoubleValue
    func (x *Model_AggregateClassificationMetrics) GetRocAuc() *wrapperspb.DoubleValue
    func (x *Model_AggregateClassificationMetrics) GetThreshold() *wrapperspb.DoubleValue
    func (*Model_AggregateClassificationMetrics) ProtoMessage()
    func (x *Model_AggregateClassificationMetrics) ProtoReflect() protoreflect.Message
    func (x *Model_AggregateClassificationMetrics) Reset()
    func (x *Model_AggregateClassificationMetrics) String() string
type Model_ArimaFittingMetrics
    func (*Model_ArimaFittingMetrics) Descriptor() ([]byte, []int)
    func (x *Model_ArimaFittingMetrics) GetAic() float64
    func (x *Model_ArimaFittingMetrics) GetLogLikelihood() float64
    func (x *Model_ArimaFittingMetrics) GetVariance() float64
    func (*Model_ArimaFittingMetrics) ProtoMessage()
    func (x *Model_ArimaFittingMetrics) ProtoReflect() protoreflect.Message
    func (x *Model_ArimaFittingMetrics) Reset()
    func (x *Model_ArimaFittingMetrics) String() string
type Model_ArimaForecastingMetrics
    func (*Model_ArimaForecastingMetrics) Descriptor() ([]byte, []int)
    func (x *Model_ArimaForecastingMetrics) GetArimaFittingMetrics() []*Model_ArimaFittingMetrics
    func (x *Model_ArimaForecastingMetrics) GetArimaSingleModelForecastingMetrics() []*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics
    func (x *Model_ArimaForecastingMetrics) GetHasDrift() []bool
    func (x *Model_ArimaForecastingMetrics) GetNonSeasonalOrder() []*Model_ArimaOrder
    func (x *Model_ArimaForecastingMetrics) GetSeasonalPeriods() []Model_SeasonalPeriod_SeasonalPeriodType
    func (x *Model_ArimaForecastingMetrics) GetTimeSeriesId() []string
    func (*Model_ArimaForecastingMetrics) ProtoMessage()
    func (x *Model_ArimaForecastingMetrics) ProtoReflect() protoreflect.Message
    func (x *Model_ArimaForecastingMetrics) Reset()
    func (x *Model_ArimaForecastingMetrics) String() string
type Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics
    func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) Descriptor() ([]byte, []int)
    func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetArimaFittingMetrics() *Model_ArimaFittingMetrics
    func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetHasDrift() bool
    func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetHasHolidayEffect() *wrapperspb.BoolValue
    func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetHasSpikesAndDips() *wrapperspb.BoolValue
    func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetHasStepChanges() *wrapperspb.BoolValue
    func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetNonSeasonalOrder() *Model_ArimaOrder
    func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetSeasonalPeriods() []Model_SeasonalPeriod_SeasonalPeriodType
    func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetTimeSeriesId() string
    func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetTimeSeriesIds() []string
    func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) ProtoMessage()
    func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) ProtoReflect() protoreflect.Message
    func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) Reset()
    func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) String() string
type Model_ArimaOrder
    func (*Model_ArimaOrder) Descriptor() ([]byte, []int)
    func (x *Model_ArimaOrder) GetD() int64
    func (x *Model_ArimaOrder) GetP() int64
    func (x *Model_ArimaOrder) GetQ() int64
    func (*Model_ArimaOrder) ProtoMessage()
    func (x *Model_ArimaOrder) ProtoReflect() protoreflect.Message
    func (x *Model_ArimaOrder) Reset()
    func (x *Model_ArimaOrder) String() string
type Model_BinaryClassificationMetrics
    func (*Model_BinaryClassificationMetrics) Descriptor() ([]byte, []int)
    func (x *Model_BinaryClassificationMetrics) GetAggregateClassificationMetrics() *Model_AggregateClassificationMetrics
    func (x *Model_BinaryClassificationMetrics) GetBinaryConfusionMatrixList() []*Model_BinaryClassificationMetrics_BinaryConfusionMatrix
    func (x *Model_BinaryClassificationMetrics) GetNegativeLabel() string
    func (x *Model_BinaryClassificationMetrics) GetPositiveLabel() string
    func (*Model_BinaryClassificationMetrics) ProtoMessage()
    func (x *Model_BinaryClassificationMetrics) ProtoReflect() protoreflect.Message
    func (x *Model_BinaryClassificationMetrics) Reset()
    func (x *Model_BinaryClassificationMetrics) String() string
type Model_BinaryClassificationMetrics_BinaryConfusionMatrix
    func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) Descriptor() ([]byte, []int)
    func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetAccuracy() *wrapperspb.DoubleValue
    func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetF1Score() *wrapperspb.DoubleValue
    func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetFalseNegatives() *wrapperspb.Int64Value
    func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetFalsePositives() *wrapperspb.Int64Value
    func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetPositiveClassThreshold() *wrapperspb.DoubleValue
    func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetPrecision() *wrapperspb.DoubleValue
    func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetRecall() *wrapperspb.DoubleValue
    func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetTrueNegatives() *wrapperspb.Int64Value
    func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetTruePositives() *wrapperspb.Int64Value
    func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) ProtoMessage()
    func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) ProtoReflect() protoreflect.Message
    func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) Reset()
    func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) String() string
type Model_ClusteringMetrics
    func (*Model_ClusteringMetrics) Descriptor() ([]byte, []int)
    func (x *Model_ClusteringMetrics) GetClusters() []*Model_ClusteringMetrics_Cluster
    func (x *Model_ClusteringMetrics) GetDaviesBouldinIndex() *wrapperspb.DoubleValue
    func (x *Model_ClusteringMetrics) GetMeanSquaredDistance() *wrapperspb.DoubleValue
    func (*Model_ClusteringMetrics) ProtoMessage()
    func (x *Model_ClusteringMetrics) ProtoReflect() protoreflect.Message
    func (x *Model_ClusteringMetrics) Reset()
    func (x *Model_ClusteringMetrics) String() string
type Model_ClusteringMetrics_Cluster
    func (*Model_ClusteringMetrics_Cluster) Descriptor() ([]byte, []int)
    func (x *Model_ClusteringMetrics_Cluster) GetCentroidId() int64
    func (x *Model_ClusteringMetrics_Cluster) GetCount() *wrapperspb.Int64Value
    func (x *Model_ClusteringMetrics_Cluster) GetFeatureValues() []*Model_ClusteringMetrics_Cluster_FeatureValue
    func (*Model_ClusteringMetrics_Cluster) ProtoMessage()
    func (x *Model_ClusteringMetrics_Cluster) ProtoReflect() protoreflect.Message
    func (x *Model_ClusteringMetrics_Cluster) Reset()
    func (x *Model_ClusteringMetrics_Cluster) String() string
type Model_ClusteringMetrics_Cluster_FeatureValue
    func (*Model_ClusteringMetrics_Cluster_FeatureValue) Descriptor() ([]byte, []int)
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue) GetCategoricalValue() *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue) GetFeatureColumn() string
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue) GetNumericalValue() *wrapperspb.DoubleValue
    func (m *Model_ClusteringMetrics_Cluster_FeatureValue) GetValue() isModel_ClusteringMetrics_Cluster_FeatureValue_Value
    func (*Model_ClusteringMetrics_Cluster_FeatureValue) ProtoMessage()
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue) ProtoReflect() protoreflect.Message
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue) Reset()
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue) String() string
type Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue
    func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) Descriptor() ([]byte, []int)
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) GetCategoryCounts() []*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount
    func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) ProtoMessage()
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) ProtoReflect() protoreflect.Message
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) Reset()
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) String() string
type Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_
type Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount
    func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) Descriptor() ([]byte, []int)
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) GetCategory() string
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) GetCount() *wrapperspb.Int64Value
    func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) ProtoMessage()
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) ProtoReflect() protoreflect.Message
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) Reset()
    func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) String() string
type Model_ClusteringMetrics_Cluster_FeatureValue_NumericalValue
type Model_DataFrequency
    func (Model_DataFrequency) Descriptor() protoreflect.EnumDescriptor
    func (x Model_DataFrequency) Enum() *Model_DataFrequency
    func (Model_DataFrequency) EnumDescriptor() ([]byte, []int)
    func (x Model_DataFrequency) Number() protoreflect.EnumNumber
    func (x Model_DataFrequency) String() string
    func (Model_DataFrequency) Type() protoreflect.EnumType
type Model_DataSplitMethod
    func (Model_DataSplitMethod) Descriptor() protoreflect.EnumDescriptor
    func (x Model_DataSplitMethod) Enum() *Model_DataSplitMethod
    func (Model_DataSplitMethod) EnumDescriptor() ([]byte, []int)
    func (x Model_DataSplitMethod) Number() protoreflect.EnumNumber
    func (x Model_DataSplitMethod) String() string
    func (Model_DataSplitMethod) Type() protoreflect.EnumType
type Model_DataSplitResult
    func (*Model_DataSplitResult) Descriptor() ([]byte, []int)
    func (x *Model_DataSplitResult) GetEvaluationTable() *TableReference
    func (x *Model_DataSplitResult) GetTrainingTable() *TableReference
    func (*Model_DataSplitResult) ProtoMessage()
    func (x *Model_DataSplitResult) ProtoReflect() protoreflect.Message
    func (x *Model_DataSplitResult) Reset()
    func (x *Model_DataSplitResult) String() string
type Model_DistanceType
    func (Model_DistanceType) Descriptor() protoreflect.EnumDescriptor
    func (x Model_DistanceType) Enum() *Model_DistanceType
    func (Model_DistanceType) EnumDescriptor() ([]byte, []int)
    func (x Model_DistanceType) Number() protoreflect.EnumNumber
    func (x Model_DistanceType) String() string
    func (Model_DistanceType) Type() protoreflect.EnumType
type Model_EvaluationMetrics
    func (*Model_EvaluationMetrics) Descriptor() ([]byte, []int)
    func (x *Model_EvaluationMetrics) GetArimaForecastingMetrics() *Model_ArimaForecastingMetrics
    func (x *Model_EvaluationMetrics) GetBinaryClassificationMetrics() *Model_BinaryClassificationMetrics
    func (x *Model_EvaluationMetrics) GetClusteringMetrics() *Model_ClusteringMetrics
    func (m *Model_EvaluationMetrics) GetMetrics() isModel_EvaluationMetrics_Metrics
    func (x *Model_EvaluationMetrics) GetMultiClassClassificationMetrics() *Model_MultiClassClassificationMetrics
    func (x *Model_EvaluationMetrics) GetRankingMetrics() *Model_RankingMetrics
    func (x *Model_EvaluationMetrics) GetRegressionMetrics() *Model_RegressionMetrics
    func (*Model_EvaluationMetrics) ProtoMessage()
    func (x *Model_EvaluationMetrics) ProtoReflect() protoreflect.Message
    func (x *Model_EvaluationMetrics) Reset()
    func (x *Model_EvaluationMetrics) String() string
type Model_EvaluationMetrics_ArimaForecastingMetrics
type Model_EvaluationMetrics_BinaryClassificationMetrics
type Model_EvaluationMetrics_ClusteringMetrics
type Model_EvaluationMetrics_MultiClassClassificationMetrics
type Model_EvaluationMetrics_RankingMetrics
type Model_EvaluationMetrics_RegressionMetrics
type Model_FeedbackType
    func (Model_FeedbackType) Descriptor() protoreflect.EnumDescriptor
    func (x Model_FeedbackType) Enum() *Model_FeedbackType
    func (Model_FeedbackType) EnumDescriptor() ([]byte, []int)
    func (x Model_FeedbackType) Number() protoreflect.EnumNumber
    func (x Model_FeedbackType) String() string
    func (Model_FeedbackType) Type() protoreflect.EnumType
type Model_GlobalExplanation
    func (*Model_GlobalExplanation) Descriptor() ([]byte, []int)
    func (x *Model_GlobalExplanation) GetClassLabel() string
    func (x *Model_GlobalExplanation) GetExplanations() []*Model_GlobalExplanation_Explanation
    func (*Model_GlobalExplanation) ProtoMessage()
    func (x *Model_GlobalExplanation) ProtoReflect() protoreflect.Message
    func (x *Model_GlobalExplanation) Reset()
    func (x *Model_GlobalExplanation) String() string
type Model_GlobalExplanation_Explanation
    func (*Model_GlobalExplanation_Explanation) Descriptor() ([]byte, []int)
    func (x *Model_GlobalExplanation_Explanation) GetAttribution() *wrapperspb.DoubleValue
    func (x *Model_GlobalExplanation_Explanation) GetFeatureName() string
    func (*Model_GlobalExplanation_Explanation) ProtoMessage()
    func (x *Model_GlobalExplanation_Explanation) ProtoReflect() protoreflect.Message
    func (x *Model_GlobalExplanation_Explanation) Reset()
    func (x *Model_GlobalExplanation_Explanation) String() string
type Model_HolidayRegion
    func (Model_HolidayRegion) Descriptor() protoreflect.EnumDescriptor
    func (x Model_HolidayRegion) Enum() *Model_HolidayRegion
    func (Model_HolidayRegion) EnumDescriptor() ([]byte, []int)
    func (x Model_HolidayRegion) Number() protoreflect.EnumNumber
    func (x Model_HolidayRegion) String() string
    func (Model_HolidayRegion) Type() protoreflect.EnumType
type Model_KmeansEnums
    func (*Model_KmeansEnums) Descriptor() ([]byte, []int)
    func (*Model_KmeansEnums) ProtoMessage()
    func (x *Model_KmeansEnums) ProtoReflect() protoreflect.Message
    func (x *Model_KmeansEnums) Reset()
    func (x *Model_KmeansEnums) String() string
type Model_KmeansEnums_KmeansInitializationMethod
    func (Model_KmeansEnums_KmeansInitializationMethod) Descriptor() protoreflect.EnumDescriptor
    func (x Model_KmeansEnums_KmeansInitializationMethod) Enum() *Model_KmeansEnums_KmeansInitializationMethod
    func (Model_KmeansEnums_KmeansInitializationMethod) EnumDescriptor() ([]byte, []int)
    func (x Model_KmeansEnums_KmeansInitializationMethod) Number() protoreflect.EnumNumber
    func (x Model_KmeansEnums_KmeansInitializationMethod) String() string
    func (Model_KmeansEnums_KmeansInitializationMethod) Type() protoreflect.EnumType
type Model_LearnRateStrategy
    func (Model_LearnRateStrategy) Descriptor() protoreflect.EnumDescriptor
    func (x Model_LearnRateStrategy) Enum() *Model_LearnRateStrategy
    func (Model_LearnRateStrategy) EnumDescriptor() ([]byte, []int)
    func (x Model_LearnRateStrategy) Number() protoreflect.EnumNumber
    func (x Model_LearnRateStrategy) String() string
    func (Model_LearnRateStrategy) Type() protoreflect.EnumType
type Model_LossType
    func (Model_LossType) Descriptor() protoreflect.EnumDescriptor
    func (x Model_LossType) Enum() *Model_LossType
    func (Model_LossType) EnumDescriptor() ([]byte, []int)
    func (x Model_LossType) Number() protoreflect.EnumNumber
    func (x Model_LossType) String() string
    func (Model_LossType) Type() protoreflect.EnumType
type Model_ModelType
    func (Model_ModelType) Descriptor() protoreflect.EnumDescriptor
    func (x Model_ModelType) Enum() *Model_ModelType
    func (Model_ModelType) EnumDescriptor() ([]byte, []int)
    func (x Model_ModelType) Number() protoreflect.EnumNumber
    func (x Model_ModelType) String() string
    func (Model_ModelType) Type() protoreflect.EnumType
type Model_MultiClassClassificationMetrics
    func (*Model_MultiClassClassificationMetrics) Descriptor() ([]byte, []int)
    func (x *Model_MultiClassClassificationMetrics) GetAggregateClassificationMetrics() *Model_AggregateClassificationMetrics
    func (x *Model_MultiClassClassificationMetrics) GetConfusionMatrixList() []*Model_MultiClassClassificationMetrics_ConfusionMatrix
    func (*Model_MultiClassClassificationMetrics) ProtoMessage()
    func (x *Model_MultiClassClassificationMetrics) ProtoReflect() protoreflect.Message
    func (x *Model_MultiClassClassificationMetrics) Reset()
    func (x *Model_MultiClassClassificationMetrics) String() string
type Model_MultiClassClassificationMetrics_ConfusionMatrix
    func (*Model_MultiClassClassificationMetrics_ConfusionMatrix) Descriptor() ([]byte, []int)
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix) GetConfidenceThreshold() *wrapperspb.DoubleValue
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix) GetRows() []*Model_MultiClassClassificationMetrics_ConfusionMatrix_Row
    func (*Model_MultiClassClassificationMetrics_ConfusionMatrix) ProtoMessage()
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix) ProtoReflect() protoreflect.Message
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix) Reset()
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix) String() string
type Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry
    func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) Descriptor() ([]byte, []int)
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) GetItemCount() *wrapperspb.Int64Value
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) GetPredictedLabel() string
    func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) ProtoMessage()
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) ProtoReflect() protoreflect.Message
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) Reset()
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) String() string
type Model_MultiClassClassificationMetrics_ConfusionMatrix_Row
    func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) Descriptor() ([]byte, []int)
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) GetActualLabel() string
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) GetEntries() []*Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry
    func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) ProtoMessage()
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) ProtoReflect() protoreflect.Message
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) Reset()
    func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) String() string
type Model_OptimizationStrategy
    func (Model_OptimizationStrategy) Descriptor() protoreflect.EnumDescriptor
    func (x Model_OptimizationStrategy) Enum() *Model_OptimizationStrategy
    func (Model_OptimizationStrategy) EnumDescriptor() ([]byte, []int)
    func (x Model_OptimizationStrategy) Number() protoreflect.EnumNumber
    func (x Model_OptimizationStrategy) String() string
    func (Model_OptimizationStrategy) Type() protoreflect.EnumType
type Model_RankingMetrics
    func (*Model_RankingMetrics) Descriptor() ([]byte, []int)
    func (x *Model_RankingMetrics) GetAverageRank() *wrapperspb.DoubleValue
    func (x *Model_RankingMetrics) GetMeanAveragePrecision() *wrapperspb.DoubleValue
    func (x *Model_RankingMetrics) GetMeanSquaredError() *wrapperspb.DoubleValue
    func (x *Model_RankingMetrics) GetNormalizedDiscountedCumulativeGain() *wrapperspb.DoubleValue
    func (*Model_RankingMetrics) ProtoMessage()
    func (x *Model_RankingMetrics) ProtoReflect() protoreflect.Message
    func (x *Model_RankingMetrics) Reset()
    func (x *Model_RankingMetrics) String() string
type Model_RegressionMetrics
    func (*Model_RegressionMetrics) Descriptor() ([]byte, []int)
    func (x *Model_RegressionMetrics) GetMeanAbsoluteError() *wrapperspb.DoubleValue
    func (x *Model_RegressionMetrics) GetMeanSquaredError() *wrapperspb.DoubleValue
    func (x *Model_RegressionMetrics) GetMeanSquaredLogError() *wrapperspb.DoubleValue
    func (x *Model_RegressionMetrics) GetMedianAbsoluteError() *wrapperspb.DoubleValue
    func (x *Model_RegressionMetrics) GetRSquared() *wrapperspb.DoubleValue
    func (*Model_RegressionMetrics) ProtoMessage()
    func (x *Model_RegressionMetrics) ProtoReflect() protoreflect.Message
    func (x *Model_RegressionMetrics) Reset()
    func (x *Model_RegressionMetrics) String() string
type Model_SeasonalPeriod
    func (*Model_SeasonalPeriod) Descriptor() ([]byte, []int)
    func (*Model_SeasonalPeriod) ProtoMessage()
    func (x *Model_SeasonalPeriod) ProtoReflect() protoreflect.Message
    func (x *Model_SeasonalPeriod) Reset()
    func (x *Model_SeasonalPeriod) String() string
type Model_SeasonalPeriod_SeasonalPeriodType
    func (Model_SeasonalPeriod_SeasonalPeriodType) Descriptor() protoreflect.EnumDescriptor
    func (x Model_SeasonalPeriod_SeasonalPeriodType) Enum() *Model_SeasonalPeriod_SeasonalPeriodType
    func (Model_SeasonalPeriod_SeasonalPeriodType) EnumDescriptor() ([]byte, []int)
    func (x Model_SeasonalPeriod_SeasonalPeriodType) Number() protoreflect.EnumNumber
    func (x Model_SeasonalPeriod_SeasonalPeriodType) String() string
    func (Model_SeasonalPeriod_SeasonalPeriodType) Type() protoreflect.EnumType
type Model_TrainingRun
    func (*Model_TrainingRun) Descriptor() ([]byte, []int)
    func (x *Model_TrainingRun) GetDataSplitResult() *Model_DataSplitResult
    func (x *Model_TrainingRun) GetEvaluationMetrics() *Model_EvaluationMetrics
    func (x *Model_TrainingRun) GetGlobalExplanations() []*Model_GlobalExplanation
    func (x *Model_TrainingRun) GetResults() []*Model_TrainingRun_IterationResult
    func (x *Model_TrainingRun) GetStartTime() *timestamppb.Timestamp
    func (x *Model_TrainingRun) GetTrainingOptions() *Model_TrainingRun_TrainingOptions
    func (*Model_TrainingRun) ProtoMessage()
    func (x *Model_TrainingRun) ProtoReflect() protoreflect.Message
    func (x *Model_TrainingRun) Reset()
    func (x *Model_TrainingRun) String() string
type Model_TrainingRun_IterationResult
    func (*Model_TrainingRun_IterationResult) Descriptor() ([]byte, []int)
    func (x *Model_TrainingRun_IterationResult) GetArimaResult() *Model_TrainingRun_IterationResult_ArimaResult
    func (x *Model_TrainingRun_IterationResult) GetClusterInfos() []*Model_TrainingRun_IterationResult_ClusterInfo
    func (x *Model_TrainingRun_IterationResult) GetDurationMs() *wrapperspb.Int64Value
    func (x *Model_TrainingRun_IterationResult) GetEvalLoss() *wrapperspb.DoubleValue
    func (x *Model_TrainingRun_IterationResult) GetIndex() *wrapperspb.Int32Value
    func (x *Model_TrainingRun_IterationResult) GetLearnRate() float64
    func (x *Model_TrainingRun_IterationResult) GetTrainingLoss() *wrapperspb.DoubleValue
    func (*Model_TrainingRun_IterationResult) ProtoMessage()
    func (x *Model_TrainingRun_IterationResult) ProtoReflect() protoreflect.Message
    func (x *Model_TrainingRun_IterationResult) Reset()
    func (x *Model_TrainingRun_IterationResult) String() string
type Model_TrainingRun_IterationResult_ArimaResult
    func (*Model_TrainingRun_IterationResult_ArimaResult) Descriptor() ([]byte, []int)
    func (x *Model_TrainingRun_IterationResult_ArimaResult) GetArimaModelInfo() []*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo
    func (x *Model_TrainingRun_IterationResult_ArimaResult) GetSeasonalPeriods() []Model_SeasonalPeriod_SeasonalPeriodType
    func (*Model_TrainingRun_IterationResult_ArimaResult) ProtoMessage()
    func (x *Model_TrainingRun_IterationResult_ArimaResult) ProtoReflect() protoreflect.Message
    func (x *Model_TrainingRun_IterationResult_ArimaResult) Reset()
    func (x *Model_TrainingRun_IterationResult_ArimaResult) String() string
type Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients
    func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) Descriptor() ([]byte, []int)
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) GetAutoRegressiveCoefficients() []float64
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) GetInterceptCoefficient() float64
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) GetMovingAverageCoefficients() []float64
    func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) ProtoMessage()
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) ProtoReflect() protoreflect.Message
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) Reset()
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) String() string
type Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo
    func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) Descriptor() ([]byte, []int)
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetArimaCoefficients() *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetArimaFittingMetrics() *Model_ArimaFittingMetrics
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetHasDrift() bool
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetHasHolidayEffect() *wrapperspb.BoolValue
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetHasSpikesAndDips() *wrapperspb.BoolValue
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetHasStepChanges() *wrapperspb.BoolValue
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetNonSeasonalOrder() *Model_ArimaOrder
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetSeasonalPeriods() []Model_SeasonalPeriod_SeasonalPeriodType
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetTimeSeriesId() string
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetTimeSeriesIds() []string
    func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) ProtoMessage()
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) ProtoReflect() protoreflect.Message
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) Reset()
    func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) String() string
type Model_TrainingRun_IterationResult_ClusterInfo
    func (*Model_TrainingRun_IterationResult_ClusterInfo) Descriptor() ([]byte, []int)
    func (x *Model_TrainingRun_IterationResult_ClusterInfo) GetCentroidId() int64
    func (x *Model_TrainingRun_IterationResult_ClusterInfo) GetClusterRadius() *wrapperspb.DoubleValue
    func (x *Model_TrainingRun_IterationResult_ClusterInfo) GetClusterSize() *wrapperspb.Int64Value
    func (*Model_TrainingRun_IterationResult_ClusterInfo) ProtoMessage()
    func (x *Model_TrainingRun_IterationResult_ClusterInfo) ProtoReflect() protoreflect.Message
    func (x *Model_TrainingRun_IterationResult_ClusterInfo) Reset()
    func (x *Model_TrainingRun_IterationResult_ClusterInfo) String() string
type Model_TrainingRun_TrainingOptions
    func (*Model_TrainingRun_TrainingOptions) Descriptor() ([]byte, []int)
    func (x *Model_TrainingRun_TrainingOptions) GetAdjustStepChanges() *wrapperspb.BoolValue
    func (x *Model_TrainingRun_TrainingOptions) GetAutoArima() bool
    func (x *Model_TrainingRun_TrainingOptions) GetAutoArimaMaxOrder() int64
    func (x *Model_TrainingRun_TrainingOptions) GetBatchSize() int64
    func (x *Model_TrainingRun_TrainingOptions) GetCleanSpikesAndDips() *wrapperspb.BoolValue
    func (x *Model_TrainingRun_TrainingOptions) GetDataFrequency() Model_DataFrequency
    func (x *Model_TrainingRun_TrainingOptions) GetDataSplitColumn() string
    func (x *Model_TrainingRun_TrainingOptions) GetDataSplitEvalFraction() float64
    func (x *Model_TrainingRun_TrainingOptions) GetDataSplitMethod() Model_DataSplitMethod
    func (x *Model_TrainingRun_TrainingOptions) GetDecomposeTimeSeries() *wrapperspb.BoolValue
    func (x *Model_TrainingRun_TrainingOptions) GetDistanceType() Model_DistanceType
    func (x *Model_TrainingRun_TrainingOptions) GetDropout() *wrapperspb.DoubleValue
    func (x *Model_TrainingRun_TrainingOptions) GetEarlyStop() *wrapperspb.BoolValue
    func (x *Model_TrainingRun_TrainingOptions) GetFeedbackType() Model_FeedbackType
    func (x *Model_TrainingRun_TrainingOptions) GetHiddenUnits() []int64
    func (x *Model_TrainingRun_TrainingOptions) GetHolidayRegion() Model_HolidayRegion
    func (x *Model_TrainingRun_TrainingOptions) GetHorizon() int64
    func (x *Model_TrainingRun_TrainingOptions) GetIncludeDrift() bool
    func (x *Model_TrainingRun_TrainingOptions) GetInitialLearnRate() float64
    func (x *Model_TrainingRun_TrainingOptions) GetInputLabelColumns() []string
    func (x *Model_TrainingRun_TrainingOptions) GetItemColumn() string
    func (x *Model_TrainingRun_TrainingOptions) GetKmeansInitializationColumn() string
    func (x *Model_TrainingRun_TrainingOptions) GetKmeansInitializationMethod() Model_KmeansEnums_KmeansInitializationMethod
    func (x *Model_TrainingRun_TrainingOptions) GetL1Regularization() *wrapperspb.DoubleValue
    func (x *Model_TrainingRun_TrainingOptions) GetL2Regularization() *wrapperspb.DoubleValue
    func (x *Model_TrainingRun_TrainingOptions) GetLabelClassWeights() map[string]float64
    func (x *Model_TrainingRun_TrainingOptions) GetLearnRate() float64
    func (x *Model_TrainingRun_TrainingOptions) GetLearnRateStrategy() Model_LearnRateStrategy
    func (x *Model_TrainingRun_TrainingOptions) GetLossType() Model_LossType
    func (x *Model_TrainingRun_TrainingOptions) GetMaxIterations() int64
    func (x *Model_TrainingRun_TrainingOptions) GetMaxTreeDepth() int64
    func (x *Model_TrainingRun_TrainingOptions) GetMinRelativeProgress() *wrapperspb.DoubleValue
    func (x *Model_TrainingRun_TrainingOptions) GetMinSplitLoss() *wrapperspb.DoubleValue
    func (x *Model_TrainingRun_TrainingOptions) GetModelUri() string
    func (x *Model_TrainingRun_TrainingOptions) GetNonSeasonalOrder() *Model_ArimaOrder
    func (x *Model_TrainingRun_TrainingOptions) GetNumClusters() int64
    func (x *Model_TrainingRun_TrainingOptions) GetNumFactors() int64
    func (x *Model_TrainingRun_TrainingOptions) GetOptimizationStrategy() Model_OptimizationStrategy
    func (x *Model_TrainingRun_TrainingOptions) GetPreserveInputStructs() bool
    func (x *Model_TrainingRun_TrainingOptions) GetSubsample() float64
    func (x *Model_TrainingRun_TrainingOptions) GetTimeSeriesDataColumn() string
    func (x *Model_TrainingRun_TrainingOptions) GetTimeSeriesIdColumn() string
    func (x *Model_TrainingRun_TrainingOptions) GetTimeSeriesIdColumns() []string
    func (x *Model_TrainingRun_TrainingOptions) GetTimeSeriesTimestampColumn() string
    func (x *Model_TrainingRun_TrainingOptions) GetUserColumn() string
    func (x *Model_TrainingRun_TrainingOptions) GetWalsAlpha() *wrapperspb.DoubleValue
    func (x *Model_TrainingRun_TrainingOptions) GetWarmStart() *wrapperspb.BoolValue
    func (*Model_TrainingRun_TrainingOptions) ProtoMessage()
    func (x *Model_TrainingRun_TrainingOptions) ProtoReflect() protoreflect.Message
    func (x *Model_TrainingRun_TrainingOptions) Reset()
    func (x *Model_TrainingRun_TrainingOptions) String() string
type PatchModelRequest
    func (*PatchModelRequest) Descriptor() ([]byte, []int)
    func (x *PatchModelRequest) GetDatasetId() string
    func (x *PatchModelRequest) GetModel() *Model
    func (x *PatchModelRequest) GetModelId() string
    func (x *PatchModelRequest) GetProjectId() string
    func (*PatchModelRequest) ProtoMessage()
    func (x *PatchModelRequest) ProtoReflect() protoreflect.Message
    func (x *PatchModelRequest) Reset()
    func (x *PatchModelRequest) String() string
type StandardSqlDataType
    func (*StandardSqlDataType) Descriptor() ([]byte, []int)
    func (x *StandardSqlDataType) GetArrayElementType() *StandardSqlDataType
    func (x *StandardSqlDataType) GetStructType() *StandardSqlStructType
    func (m *StandardSqlDataType) GetSubType() isStandardSqlDataType_SubType
    func (x *StandardSqlDataType) GetTypeKind() StandardSqlDataType_TypeKind
    func (*StandardSqlDataType) ProtoMessage()
    func (x *StandardSqlDataType) ProtoReflect() protoreflect.Message
    func (x *StandardSqlDataType) Reset()
    func (x *StandardSqlDataType) String() string
type StandardSqlDataType_ArrayElementType
type StandardSqlDataType_StructType
type StandardSqlDataType_TypeKind
    func (StandardSqlDataType_TypeKind) Descriptor() protoreflect.EnumDescriptor
    func (x StandardSqlDataType_TypeKind) Enum() *StandardSqlDataType_TypeKind
    func (StandardSqlDataType_TypeKind) EnumDescriptor() ([]byte, []int)
    func (x StandardSqlDataType_TypeKind) Number() protoreflect.EnumNumber
    func (x StandardSqlDataType_TypeKind) String() string
    func (StandardSqlDataType_TypeKind) Type() protoreflect.EnumType
type StandardSqlField
    func (*StandardSqlField) Descriptor() ([]byte, []int)
    func (x *StandardSqlField) GetName() string
    func (x *StandardSqlField) GetType() *StandardSqlDataType
    func (*StandardSqlField) ProtoMessage()
    func (x *StandardSqlField) ProtoReflect() protoreflect.Message
    func (x *StandardSqlField) Reset()
    func (x *StandardSqlField) String() string
type StandardSqlStructType
    func (*StandardSqlStructType) Descriptor() ([]byte, []int)
    func (x *StandardSqlStructType) GetFields() []*StandardSqlField
    func (*StandardSqlStructType) ProtoMessage()
    func (x *StandardSqlStructType) ProtoReflect() protoreflect.Message
    func (x *StandardSqlStructType) Reset()
    func (x *StandardSqlStructType) String() string
type StandardSqlTableType
    func (*StandardSqlTableType) Descriptor() ([]byte, []int)
    func (x *StandardSqlTableType) GetColumns() []*StandardSqlField
    func (*StandardSqlTableType) ProtoMessage()
    func (x *StandardSqlTableType) ProtoReflect() protoreflect.Message
    func (x *StandardSqlTableType) Reset()
    func (x *StandardSqlTableType) String() string
type TableReference
    func (*TableReference) Descriptor() ([]byte, []int)
    func (x *TableReference) GetDatasetId() string
    func (x *TableReference) GetDatasetIdAlternative() []string
    func (x *TableReference) GetProjectId() string
    func (x *TableReference) GetProjectIdAlternative() []string
    func (x *TableReference) GetTableId() string
    func (x *TableReference) GetTableIdAlternative() []string
    func (*TableReference) ProtoMessage()
    func (x *TableReference) ProtoReflect() protoreflect.Message
    func (x *TableReference) Reset()
    func (x *TableReference) String() string
type UnimplementedModelServiceServer
    func (*UnimplementedModelServiceServer) DeleteModel(context.Context, *DeleteModelRequest) (*emptypb.Empty, error)
    func (*UnimplementedModelServiceServer) GetModel(context.Context, *GetModelRequest) (*Model, error)
    func (*UnimplementedModelServiceServer) ListModels(context.Context, *ListModelsRequest) (*ListModelsResponse, error)
    func (*UnimplementedModelServiceServer) PatchModel(context.Context, *PatchModelRequest) (*Model, error)

Package files

encryption_config.pb.go model.pb.go model_reference.pb.go standard_sql.pb.go table_reference.pb.go

Variables

Enum value maps for Model_ModelType.

var (
    Model_ModelType_name = map[int32]string{
        0:  "MODEL_TYPE_UNSPECIFIED",
        1:  "LINEAR_REGRESSION",
        2:  "LOGISTIC_REGRESSION",
        3:  "KMEANS",
        4:  "MATRIX_FACTORIZATION",
        5:  "DNN_CLASSIFIER",
        6:  "TENSORFLOW",
        7:  "DNN_REGRESSOR",
        9:  "BOOSTED_TREE_REGRESSOR",
        10: "BOOSTED_TREE_CLASSIFIER",
        11: "ARIMA",
        12: "AUTOML_REGRESSOR",
        13: "AUTOML_CLASSIFIER",
        19: "ARIMA_PLUS",
    }
    Model_ModelType_value = map[string]int32{
        "MODEL_TYPE_UNSPECIFIED":  0,
        "LINEAR_REGRESSION":       1,
        "LOGISTIC_REGRESSION":     2,
        "KMEANS":                  3,
        "MATRIX_FACTORIZATION":    4,
        "DNN_CLASSIFIER":          5,
        "TENSORFLOW":              6,
        "DNN_REGRESSOR":           7,
        "BOOSTED_TREE_REGRESSOR":  9,
        "BOOSTED_TREE_CLASSIFIER": 10,
        "ARIMA":                   11,
        "AUTOML_REGRESSOR":        12,
        "AUTOML_CLASSIFIER":       13,
        "ARIMA_PLUS":              19,
    }
)

Enum value maps for Model_LossType.

var (
    Model_LossType_name = map[int32]string{
        0: "LOSS_TYPE_UNSPECIFIED",
        1: "MEAN_SQUARED_LOSS",
        2: "MEAN_LOG_LOSS",
    }
    Model_LossType_value = map[string]int32{
        "LOSS_TYPE_UNSPECIFIED": 0,
        "MEAN_SQUARED_LOSS":     1,
        "MEAN_LOG_LOSS":         2,
    }
)

Enum value maps for Model_DistanceType.

var (
    Model_DistanceType_name = map[int32]string{
        0: "DISTANCE_TYPE_UNSPECIFIED",
        1: "EUCLIDEAN",
        2: "COSINE",
    }
    Model_DistanceType_value = map[string]int32{
        "DISTANCE_TYPE_UNSPECIFIED": 0,
        "EUCLIDEAN":                 1,
        "COSINE":                    2,
    }
)

Enum value maps for Model_DataSplitMethod.

var (
    Model_DataSplitMethod_name = map[int32]string{
        0: "DATA_SPLIT_METHOD_UNSPECIFIED",
        1: "RANDOM",
        2: "CUSTOM",
        3: "SEQUENTIAL",
        4: "NO_SPLIT",
        5: "AUTO_SPLIT",
    }
    Model_DataSplitMethod_value = map[string]int32{
        "DATA_SPLIT_METHOD_UNSPECIFIED": 0,
        "RANDOM":                        1,
        "CUSTOM":                        2,
        "SEQUENTIAL":                    3,
        "NO_SPLIT":                      4,
        "AUTO_SPLIT":                    5,
    }
)

Enum value maps for Model_DataFrequency.

var (
    Model_DataFrequency_name = map[int32]string{
        0: "DATA_FREQUENCY_UNSPECIFIED",
        1: "AUTO_FREQUENCY",
        2: "YEARLY",
        3: "QUARTERLY",
        4: "MONTHLY",
        5: "WEEKLY",
        6: "DAILY",
        7: "HOURLY",
        8: "PER_MINUTE",
    }
    Model_DataFrequency_value = map[string]int32{
        "DATA_FREQUENCY_UNSPECIFIED": 0,
        "AUTO_FREQUENCY":             1,
        "YEARLY":                     2,
        "QUARTERLY":                  3,
        "MONTHLY":                    4,
        "WEEKLY":                     5,
        "DAILY":                      6,
        "HOURLY":                     7,
        "PER_MINUTE":                 8,
    }
)

Enum value maps for Model_HolidayRegion.

var (
    Model_HolidayRegion_name = map[int32]string{
        0:  "HOLIDAY_REGION_UNSPECIFIED",
        1:  "GLOBAL",
        2:  "NA",
        3:  "JAPAC",
        4:  "EMEA",
        5:  "LAC",
        6:  "AE",
        7:  "AR",
        8:  "AT",
        9:  "AU",
        10: "BE",
        11: "BR",
        12: "CA",
        13: "CH",
        14: "CL",
        15: "CN",
        16: "CO",
        17: "CS",
        18: "CZ",
        19: "DE",
        20: "DK",
        21: "DZ",
        22: "EC",
        23: "EE",
        24: "EG",
        25: "ES",
        26: "FI",
        27: "FR",
        28: "GB",
        29: "GR",
        30: "HK",
        31: "HU",
        32: "ID",
        33: "IE",
        34: "IL",
        35: "IN",
        36: "IR",
        37: "IT",
        38: "JP",
        39: "KR",
        40: "LV",
        41: "MA",
        42: "MX",
        43: "MY",
        44: "NG",
        45: "NL",
        46: "NO",
        47: "NZ",
        48: "PE",
        49: "PH",
        50: "PK",
        51: "PL",
        52: "PT",
        53: "RO",
        54: "RS",
        55: "RU",
        56: "SA",
        57: "SE",
        58: "SG",
        59: "SI",
        60: "SK",
        61: "TH",
        62: "TR",
        63: "TW",
        64: "UA",
        65: "US",
        66: "VE",
        67: "VN",
        68: "ZA",
    }
    Model_HolidayRegion_value = map[string]int32{
        "HOLIDAY_REGION_UNSPECIFIED": 0,
        "GLOBAL":                     1,
        "NA":                         2,
        "JAPAC":                      3,
        "EMEA":                       4,
        "LAC":                        5,
        "AE":                         6,
        "AR":                         7,
        "AT":                         8,
        "AU":                         9,
        "BE":                         10,
        "BR":                         11,
        "CA":                         12,
        "CH":                         13,
        "CL":                         14,
        "CN":                         15,
        "CO":                         16,
        "CS":                         17,
        "CZ":                         18,
        "DE":                         19,
        "DK":                         20,
        "DZ":                         21,
        "EC":                         22,
        "EE":                         23,
        "EG":                         24,
        "ES":                         25,
        "FI":                         26,
        "FR":                         27,
        "GB":                         28,
        "GR":                         29,
        "HK":                         30,
        "HU":                         31,
        "ID":                         32,
        "IE":                         33,
        "IL":                         34,
        "IN":                         35,
        "IR":                         36,
        "IT":                         37,
        "JP":                         38,
        "KR":                         39,
        "LV":                         40,
        "MA":                         41,
        "MX":                         42,
        "MY":                         43,
        "NG":                         44,
        "NL":                         45,
        "NO":                         46,
        "NZ":                         47,
        "PE":                         48,
        "PH":                         49,
        "PK":                         50,
        "PL":                         51,
        "PT":                         52,
        "RO":                         53,
        "RS":                         54,
        "RU":                         55,
        "SA":                         56,
        "SE":                         57,
        "SG":                         58,
        "SI":                         59,
        "SK":                         60,
        "TH":                         61,
        "TR":                         62,
        "TW":                         63,
        "UA":                         64,
        "US":                         65,
        "VE":                         66,
        "VN":                         67,
        "ZA":                         68,
    }
)

Enum value maps for Model_LearnRateStrategy.

var (
    Model_LearnRateStrategy_name = map[int32]string{
        0: "LEARN_RATE_STRATEGY_UNSPECIFIED",
        1: "LINE_SEARCH",
        2: "CONSTANT",
    }
    Model_LearnRateStrategy_value = map[string]int32{
        "LEARN_RATE_STRATEGY_UNSPECIFIED": 0,
        "LINE_SEARCH":                     1,
        "CONSTANT":                        2,
    }
)

Enum value maps for Model_OptimizationStrategy.

var (
    Model_OptimizationStrategy_name = map[int32]string{
        0: "OPTIMIZATION_STRATEGY_UNSPECIFIED",
        1: "BATCH_GRADIENT_DESCENT",
        2: "NORMAL_EQUATION",
    }
    Model_OptimizationStrategy_value = map[string]int32{
        "OPTIMIZATION_STRATEGY_UNSPECIFIED": 0,
        "BATCH_GRADIENT_DESCENT":            1,
        "NORMAL_EQUATION":                   2,
    }
)

Enum value maps for Model_FeedbackType.

var (
    Model_FeedbackType_name = map[int32]string{
        0: "FEEDBACK_TYPE_UNSPECIFIED",
        1: "IMPLICIT",
        2: "EXPLICIT",
    }
    Model_FeedbackType_value = map[string]int32{
        "FEEDBACK_TYPE_UNSPECIFIED": 0,
        "IMPLICIT":                  1,
        "EXPLICIT":                  2,
    }
)

Enum value maps for Model_SeasonalPeriod_SeasonalPeriodType.

var (
    Model_SeasonalPeriod_SeasonalPeriodType_name = map[int32]string{
        0: "SEASONAL_PERIOD_TYPE_UNSPECIFIED",
        1: "NO_SEASONALITY",
        2: "DAILY",
        3: "WEEKLY",
        4: "MONTHLY",
        5: "QUARTERLY",
        6: "YEARLY",
    }
    Model_SeasonalPeriod_SeasonalPeriodType_value = map[string]int32{
        "SEASONAL_PERIOD_TYPE_UNSPECIFIED": 0,
        "NO_SEASONALITY":                   1,
        "DAILY":                            2,
        "WEEKLY":                           3,
        "MONTHLY":                          4,
        "QUARTERLY":                        5,
        "YEARLY":                           6,
    }
)

Enum value maps for Model_KmeansEnums_KmeansInitializationMethod.

var (
    Model_KmeansEnums_KmeansInitializationMethod_name = map[int32]string{
        0: "KMEANS_INITIALIZATION_METHOD_UNSPECIFIED",
        1: "RANDOM",
        2: "CUSTOM",
        3: "KMEANS_PLUS_PLUS",
    }
    Model_KmeansEnums_KmeansInitializationMethod_value = map[string]int32{
        "KMEANS_INITIALIZATION_METHOD_UNSPECIFIED": 0,
        "RANDOM":           1,
        "CUSTOM":           2,
        "KMEANS_PLUS_PLUS": 3,
    }
)

Enum value maps for StandardSqlDataType_TypeKind.

var (
    StandardSqlDataType_TypeKind_name = map[int32]string{
        0:  "TYPE_KIND_UNSPECIFIED",
        2:  "INT64",
        5:  "BOOL",
        7:  "FLOAT64",
        8:  "STRING",
        9:  "BYTES",
        19: "TIMESTAMP",
        10: "DATE",
        20: "TIME",
        21: "DATETIME",
        26: "INTERVAL",
        22: "GEOGRAPHY",
        23: "NUMERIC",
        24: "BIGNUMERIC",
        25: "JSON",
        16: "ARRAY",
        17: "STRUCT",
    }
    StandardSqlDataType_TypeKind_value = map[string]int32{
        "TYPE_KIND_UNSPECIFIED": 0,
        "INT64":                 2,
        "BOOL":                  5,
        "FLOAT64":               7,
        "STRING":                8,
        "BYTES":                 9,
        "TIMESTAMP":             19,
        "DATE":                  10,
        "TIME":                  20,
        "DATETIME":              21,
        "INTERVAL":              26,
        "GEOGRAPHY":             22,
        "NUMERIC":               23,
        "BIGNUMERIC":            24,
        "JSON":                  25,
        "ARRAY":                 16,
        "STRUCT":                17,
    }
)
var File_google_cloud_bigquery_v2_encryption_config_proto protoreflect.FileDescriptor
var File_google_cloud_bigquery_v2_model_proto protoreflect.FileDescriptor
var File_google_cloud_bigquery_v2_model_reference_proto protoreflect.FileDescriptor
var File_google_cloud_bigquery_v2_standard_sql_proto protoreflect.FileDescriptor
var File_google_cloud_bigquery_v2_table_reference_proto protoreflect.FileDescriptor

func RegisterModelServiceServer

func RegisterModelServiceServer(s *grpc.Server, srv ModelServiceServer)

type DeleteModelRequest

type DeleteModelRequest struct {

    // Required. Project ID of the model to delete.
    ProjectId string `protobuf:"bytes,1,opt,name=project_id,json=projectId,proto3" json:"project_id,omitempty"`
    // Required. Dataset ID of the model to delete.
    DatasetId string `protobuf:"bytes,2,opt,name=dataset_id,json=datasetId,proto3" json:"dataset_id,omitempty"`
    // Required. Model ID of the model to delete.
    ModelId string `protobuf:"bytes,3,opt,name=model_id,json=modelId,proto3" json:"model_id,omitempty"`
    // contains filtered or unexported fields
}

func (*DeleteModelRequest) Descriptor

func (*DeleteModelRequest) Descriptor() ([]byte, []int)

Deprecated: Use DeleteModelRequest.ProtoReflect.Descriptor instead.

func (*DeleteModelRequest) GetDatasetId

func (x *DeleteModelRequest) GetDatasetId() string

func (*DeleteModelRequest) GetModelId

func (x *DeleteModelRequest) GetModelId() string

func (*DeleteModelRequest) GetProjectId

func (x *DeleteModelRequest) GetProjectId() string

func (*DeleteModelRequest) ProtoMessage

func (*DeleteModelRequest) ProtoMessage()

func (*DeleteModelRequest) ProtoReflect

func (x *DeleteModelRequest) ProtoReflect() protoreflect.Message

func (*DeleteModelRequest) Reset

func (x *DeleteModelRequest) Reset()

func (*DeleteModelRequest) String

func (x *DeleteModelRequest) String() string

type EncryptionConfiguration

type EncryptionConfiguration struct {

    // Optional. Describes the Cloud KMS encryption key that will be used to
    // protect destination BigQuery table. The BigQuery Service Account associated
    // with your project requires access to this encryption key.
    KmsKeyName *wrapperspb.StringValue `protobuf:"bytes,1,opt,name=kms_key_name,json=kmsKeyName,proto3" json:"kms_key_name,omitempty"`
    // contains filtered or unexported fields
}

func (*EncryptionConfiguration) Descriptor

func (*EncryptionConfiguration) Descriptor() ([]byte, []int)

Deprecated: Use EncryptionConfiguration.ProtoReflect.Descriptor instead.

func (*EncryptionConfiguration) GetKmsKeyName

func (x *EncryptionConfiguration) GetKmsKeyName() *wrapperspb.StringValue

func (*EncryptionConfiguration) ProtoMessage

func (*EncryptionConfiguration) ProtoMessage()

func (*EncryptionConfiguration) ProtoReflect

func (x *EncryptionConfiguration) ProtoReflect() protoreflect.Message

func (*EncryptionConfiguration) Reset

func (x *EncryptionConfiguration) Reset()

func (*EncryptionConfiguration) String

func (x *EncryptionConfiguration) String() string

type GetModelRequest

type GetModelRequest struct {

    // Required. Project ID of the requested model.
    ProjectId string `protobuf:"bytes,1,opt,name=project_id,json=projectId,proto3" json:"project_id,omitempty"`
    // Required. Dataset ID of the requested model.
    DatasetId string `protobuf:"bytes,2,opt,name=dataset_id,json=datasetId,proto3" json:"dataset_id,omitempty"`
    // Required. Model ID of the requested model.
    ModelId string `protobuf:"bytes,3,opt,name=model_id,json=modelId,proto3" json:"model_id,omitempty"`
    // contains filtered or unexported fields
}

func (*GetModelRequest) Descriptor

func (*GetModelRequest) Descriptor() ([]byte, []int)

Deprecated: Use GetModelRequest.ProtoReflect.Descriptor instead.

func (*GetModelRequest) GetDatasetId

func (x *GetModelRequest) GetDatasetId() string

func (*GetModelRequest) GetModelId

func (x *GetModelRequest) GetModelId() string

func (*GetModelRequest) GetProjectId

func (x *GetModelRequest) GetProjectId() string

func (*GetModelRequest) ProtoMessage

func (*GetModelRequest) ProtoMessage()

func (*GetModelRequest) ProtoReflect

func (x *GetModelRequest) ProtoReflect() protoreflect.Message

func (*GetModelRequest) Reset

func (x *GetModelRequest) Reset()

func (*GetModelRequest) String

func (x *GetModelRequest) String() string

type ListModelsRequest

type ListModelsRequest struct {

    // Required. Project ID of the models to list.
    ProjectId string `protobuf:"bytes,1,opt,name=project_id,json=projectId,proto3" json:"project_id,omitempty"`
    // Required. Dataset ID of the models to list.
    DatasetId string `protobuf:"bytes,2,opt,name=dataset_id,json=datasetId,proto3" json:"dataset_id,omitempty"`
    // The maximum number of results to return in a single response page.
    // Leverage the page tokens to iterate through the entire collection.
    MaxResults *wrapperspb.UInt32Value `protobuf:"bytes,3,opt,name=max_results,json=maxResults,proto3" json:"max_results,omitempty"`
    // Page token, returned by a previous call to request the next page of
    // results
    PageToken string `protobuf:"bytes,4,opt,name=page_token,json=pageToken,proto3" json:"page_token,omitempty"`
    // contains filtered or unexported fields
}

func (*ListModelsRequest) Descriptor

func (*ListModelsRequest) Descriptor() ([]byte, []int)

Deprecated: Use ListModelsRequest.ProtoReflect.Descriptor instead.

func (*ListModelsRequest) GetDatasetId

func (x *ListModelsRequest) GetDatasetId() string

func (*ListModelsRequest) GetMaxResults

func (x *ListModelsRequest) GetMaxResults() *wrapperspb.UInt32Value

func (*ListModelsRequest) GetPageToken

func (x *ListModelsRequest) GetPageToken() string

func (*ListModelsRequest) GetProjectId

func (x *ListModelsRequest) GetProjectId() string

func (*ListModelsRequest) ProtoMessage

func (*ListModelsRequest) ProtoMessage()

func (*ListModelsRequest) ProtoReflect

func (x *ListModelsRequest) ProtoReflect() protoreflect.Message

func (*ListModelsRequest) Reset

func (x *ListModelsRequest) Reset()

func (*ListModelsRequest) String

func (x *ListModelsRequest) String() string

type ListModelsResponse

type ListModelsResponse struct {

    // Models in the requested dataset. Only the following fields are populated:
    // model_reference, model_type, creation_time, last_modified_time and
    // labels.
    Models []*Model `protobuf:"bytes,1,rep,name=models,proto3" json:"models,omitempty"`
    // A token to request the next page of results.
    NextPageToken string `protobuf:"bytes,2,opt,name=next_page_token,json=nextPageToken,proto3" json:"next_page_token,omitempty"`
    // contains filtered or unexported fields
}

func (*ListModelsResponse) Descriptor

func (*ListModelsResponse) Descriptor() ([]byte, []int)

Deprecated: Use ListModelsResponse.ProtoReflect.Descriptor instead.

func (*ListModelsResponse) GetModels

func (x *ListModelsResponse) GetModels() []*Model

func (*ListModelsResponse) GetNextPageToken

func (x *ListModelsResponse) GetNextPageToken() string

func (*ListModelsResponse) ProtoMessage

func (*ListModelsResponse) ProtoMessage()

func (*ListModelsResponse) ProtoReflect

func (x *ListModelsResponse) ProtoReflect() protoreflect.Message

func (*ListModelsResponse) Reset

func (x *ListModelsResponse) Reset()

func (*ListModelsResponse) String

func (x *ListModelsResponse) String() string

type Model

type Model struct {

    // Output only. A hash of this resource.
    Etag string `protobuf:"bytes,1,opt,name=etag,proto3" json:"etag,omitempty"`
    // Required. Unique identifier for this model.
    ModelReference *ModelReference `protobuf:"bytes,2,opt,name=model_reference,json=modelReference,proto3" json:"model_reference,omitempty"`
    // Output only. The time when this model was created, in millisecs since the epoch.
    CreationTime int64 `protobuf:"varint,5,opt,name=creation_time,json=creationTime,proto3" json:"creation_time,omitempty"`
    // Output only. The time when this model was last modified, in millisecs since the epoch.
    LastModifiedTime int64 `protobuf:"varint,6,opt,name=last_modified_time,json=lastModifiedTime,proto3" json:"last_modified_time,omitempty"`
    // Optional. A user-friendly description of this model.
    Description string `protobuf:"bytes,12,opt,name=description,proto3" json:"description,omitempty"`
    // Optional. A descriptive name for this model.
    FriendlyName string `protobuf:"bytes,14,opt,name=friendly_name,json=friendlyName,proto3" json:"friendly_name,omitempty"`
    // The labels associated with this model. You can use these to organize
    // and group your models. Label keys and values can be no longer
    // than 63 characters, can only contain lowercase letters, numeric
    // characters, underscores and dashes. International characters are allowed.
    // Label values are optional. Label keys must start with a letter and each
    // label in the list must have a different key.
    Labels map[string]string `protobuf:"bytes,15,rep,name=labels,proto3" json:"labels,omitempty" protobuf_key:"bytes,1,opt,name=key,proto3" protobuf_val:"bytes,2,opt,name=value,proto3"`
    // Optional. The time when this model expires, in milliseconds since the epoch.
    // If not present, the model will persist indefinitely. Expired models
    // will be deleted and their storage reclaimed.  The defaultTableExpirationMs
    // property of the encapsulating dataset can be used to set a default
    // expirationTime on newly created models.
    ExpirationTime int64 `protobuf:"varint,16,opt,name=expiration_time,json=expirationTime,proto3" json:"expiration_time,omitempty"`
    // Output only. The geographic location where the model resides. This value
    // is inherited from the dataset.
    Location string `protobuf:"bytes,13,opt,name=location,proto3" json:"location,omitempty"`
    // Custom encryption configuration (e.g., Cloud KMS keys). This shows the
    // encryption configuration of the model data while stored in BigQuery
    // storage. This field can be used with PatchModel to update encryption key
    // for an already encrypted model.
    EncryptionConfiguration *EncryptionConfiguration `protobuf:"bytes,17,opt,name=encryption_configuration,json=encryptionConfiguration,proto3" json:"encryption_configuration,omitempty"`
    // Output only. Type of the model resource.
    ModelType Model_ModelType `protobuf:"varint,7,opt,name=model_type,json=modelType,proto3,enum=google.cloud.bigquery.v2.Model_ModelType" json:"model_type,omitempty"`
    // Output only. Information for all training runs in increasing order of start_time.
    TrainingRuns []*Model_TrainingRun `protobuf:"bytes,9,rep,name=training_runs,json=trainingRuns,proto3" json:"training_runs,omitempty"`
    // Output only. Input feature columns that were used to train this model.
    FeatureColumns []*StandardSqlField `protobuf:"bytes,10,rep,name=feature_columns,json=featureColumns,proto3" json:"feature_columns,omitempty"`
    // Output only. Label columns that were used to train this model.
    // The output of the model will have a "predicted_" prefix to these columns.
    LabelColumns []*StandardSqlField `protobuf:"bytes,11,rep,name=label_columns,json=labelColumns,proto3" json:"label_columns,omitempty"`
    // The best trial_id across all training runs.
    //
    // Deprecated: Do not use.
    BestTrialId int64 `protobuf:"varint,19,opt,name=best_trial_id,json=bestTrialId,proto3" json:"best_trial_id,omitempty"`
    // contains filtered or unexported fields
}

func (*Model) Descriptor

func (*Model) Descriptor() ([]byte, []int)

Deprecated: Use Model.ProtoReflect.Descriptor instead.

func (*Model) GetBestTrialId

func (x *Model) GetBestTrialId() int64

Deprecated: Do not use.

func (*Model) GetCreationTime

func (x *Model) GetCreationTime() int64

func (*Model) GetDescription

func (x *Model) GetDescription() string

func (*Model) GetEncryptionConfiguration

func (x *Model) GetEncryptionConfiguration() *EncryptionConfiguration

func (*Model) GetEtag

func (x *Model) GetEtag() string

func (*Model) GetExpirationTime

func (x *Model) GetExpirationTime() int64

func (*Model) GetFeatureColumns

func (x *Model) GetFeatureColumns() []*StandardSqlField

func (*Model) GetFriendlyName

func (x *Model) GetFriendlyName() string

func (*Model) GetLabelColumns

func (x *Model) GetLabelColumns() []*StandardSqlField

func (*Model) GetLabels

func (x *Model) GetLabels() map[string]string

func (*Model) GetLastModifiedTime

func (x *Model) GetLastModifiedTime() int64

func (*Model) GetLocation

func (x *Model) GetLocation() string

func (*Model) GetModelReference

func (x *Model) GetModelReference() *ModelReference

func (*Model) GetModelType

func (x *Model) GetModelType() Model_ModelType

func (*Model) GetTrainingRuns

func (x *Model) GetTrainingRuns() []*Model_TrainingRun

func (*Model) ProtoMessage

func (*Model) ProtoMessage()

func (*Model) ProtoReflect

func (x *Model) ProtoReflect() protoreflect.Message

func (*Model) Reset

func (x *Model) Reset()

func (*Model) String

func (x *Model) String() string

type ModelReference

Id path of a model.

type ModelReference struct {

    // Required. The ID of the project containing this model.
    ProjectId string `protobuf:"bytes,1,opt,name=project_id,json=projectId,proto3" json:"project_id,omitempty"`
    // Required. The ID of the dataset containing this model.
    DatasetId string `protobuf:"bytes,2,opt,name=dataset_id,json=datasetId,proto3" json:"dataset_id,omitempty"`
    // Required. The ID of the model. The ID must contain only
    // letters (a-z, A-Z), numbers (0-9), or underscores (_). The maximum
    // length is 1,024 characters.
    ModelId string `protobuf:"bytes,3,opt,name=model_id,json=modelId,proto3" json:"model_id,omitempty"`
    // contains filtered or unexported fields
}

func (*ModelReference) Descriptor

func (*ModelReference) Descriptor() ([]byte, []int)

Deprecated: Use ModelReference.ProtoReflect.Descriptor instead.

func (*ModelReference) GetDatasetId

func (x *ModelReference) GetDatasetId() string

func (*ModelReference) GetModelId

func (x *ModelReference) GetModelId() string

func (*ModelReference) GetProjectId

func (x *ModelReference) GetProjectId() string

func (*ModelReference) ProtoMessage

func (*ModelReference) ProtoMessage()

func (*ModelReference) ProtoReflect

func (x *ModelReference) ProtoReflect() protoreflect.Message

func (*ModelReference) Reset

func (x *ModelReference) Reset()

func (*ModelReference) String

func (x *ModelReference) String() string

type ModelServiceClient

ModelServiceClient is the client API for ModelService service.

For semantics around ctx use and closing/ending streaming RPCs, please refer to https://godoc.org/google.golang.org/grpc#ClientConn.NewStream.

type ModelServiceClient interface {
    // Gets the specified model resource by model ID.
    GetModel(ctx context.Context, in *GetModelRequest, opts ...grpc.CallOption) (*Model, error)
    // Lists all models in the specified dataset. Requires the READER dataset
    // role. After retrieving the list of models, you can get information about a
    // particular model by calling the models.get method.
    ListModels(ctx context.Context, in *ListModelsRequest, opts ...grpc.CallOption) (*ListModelsResponse, error)
    // Patch specific fields in the specified model.
    PatchModel(ctx context.Context, in *PatchModelRequest, opts ...grpc.CallOption) (*Model, error)
    // Deletes the model specified by modelId from the dataset.
    DeleteModel(ctx context.Context, in *DeleteModelRequest, opts ...grpc.CallOption) (*emptypb.Empty, error)
}

func NewModelServiceClient

func NewModelServiceClient(cc grpc.ClientConnInterface) ModelServiceClient

type ModelServiceServer

ModelServiceServer is the server API for ModelService service.

type ModelServiceServer interface {
    // Gets the specified model resource by model ID.
    GetModel(context.Context, *GetModelRequest) (*Model, error)
    // Lists all models in the specified dataset. Requires the READER dataset
    // role. After retrieving the list of models, you can get information about a
    // particular model by calling the models.get method.
    ListModels(context.Context, *ListModelsRequest) (*ListModelsResponse, error)
    // Patch specific fields in the specified model.
    PatchModel(context.Context, *PatchModelRequest) (*Model, error)
    // Deletes the model specified by modelId from the dataset.
    DeleteModel(context.Context, *DeleteModelRequest) (*emptypb.Empty, error)
}

type Model_AggregateClassificationMetrics

Aggregate metrics for classification/classifier models. For multi-class models, the metrics are either macro-averaged or micro-averaged. When macro-averaged, the metrics are calculated for each label and then an unweighted average is taken of those values. When micro-averaged, the metric is calculated globally by counting the total number of correctly predicted rows.

type Model_AggregateClassificationMetrics struct {

    // Precision is the fraction of actual positive predictions that had
    // positive actual labels. For multiclass this is a macro-averaged
    // metric treating each class as a binary classifier.
    Precision *wrapperspb.DoubleValue `protobuf:"bytes,1,opt,name=precision,proto3" json:"precision,omitempty"`
    // Recall is the fraction of actual positive labels that were given a
    // positive prediction. For multiclass this is a macro-averaged metric.
    Recall *wrapperspb.DoubleValue `protobuf:"bytes,2,opt,name=recall,proto3" json:"recall,omitempty"`
    // Accuracy is the fraction of predictions given the correct label. For
    // multiclass this is a micro-averaged metric.
    Accuracy *wrapperspb.DoubleValue `protobuf:"bytes,3,opt,name=accuracy,proto3" json:"accuracy,omitempty"`
    // Threshold at which the metrics are computed. For binary
    // classification models this is the positive class threshold.
    // For multi-class classfication models this is the confidence
    // threshold.
    Threshold *wrapperspb.DoubleValue `protobuf:"bytes,4,opt,name=threshold,proto3" json:"threshold,omitempty"`
    // The F1 score is an average of recall and precision. For multiclass
    // this is a macro-averaged metric.
    F1Score *wrapperspb.DoubleValue `protobuf:"bytes,5,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"`
    // Logarithmic Loss. For multiclass this is a macro-averaged metric.
    LogLoss *wrapperspb.DoubleValue `protobuf:"bytes,6,opt,name=log_loss,json=logLoss,proto3" json:"log_loss,omitempty"`
    // Area Under a ROC Curve. For multiclass this is a macro-averaged
    // metric.
    RocAuc *wrapperspb.DoubleValue `protobuf:"bytes,7,opt,name=roc_auc,json=rocAuc,proto3" json:"roc_auc,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_AggregateClassificationMetrics) Descriptor

func (*Model_AggregateClassificationMetrics) Descriptor() ([]byte, []int)

Deprecated: Use Model_AggregateClassificationMetrics.ProtoReflect.Descriptor instead.

func (*Model_AggregateClassificationMetrics) GetAccuracy

func (x *Model_AggregateClassificationMetrics) GetAccuracy() *wrapperspb.DoubleValue

func (*Model_AggregateClassificationMetrics) GetF1Score

func (x *Model_AggregateClassificationMetrics) GetF1Score() *wrapperspb.DoubleValue

func (*Model_AggregateClassificationMetrics) GetLogLoss

func (x *Model_AggregateClassificationMetrics) GetLogLoss() *wrapperspb.DoubleValue

func (*Model_AggregateClassificationMetrics) GetPrecision

func (x *Model_AggregateClassificationMetrics) GetPrecision() *wrapperspb.DoubleValue

func (*Model_AggregateClassificationMetrics) GetRecall

func (x *Model_AggregateClassificationMetrics) GetRecall() *wrapperspb.DoubleValue

func (*Model_AggregateClassificationMetrics) GetRocAuc

func (x *Model_AggregateClassificationMetrics) GetRocAuc() *wrapperspb.DoubleValue

func (*Model_AggregateClassificationMetrics) GetThreshold

func (x *Model_AggregateClassificationMetrics) GetThreshold() *wrapperspb.DoubleValue

func (*Model_AggregateClassificationMetrics) ProtoMessage

func (*Model_AggregateClassificationMetrics) ProtoMessage()

func (*Model_AggregateClassificationMetrics) ProtoReflect

func (x *Model_AggregateClassificationMetrics) ProtoReflect() protoreflect.Message

func (*Model_AggregateClassificationMetrics) Reset

func (x *Model_AggregateClassificationMetrics) Reset()

func (*Model_AggregateClassificationMetrics) String

func (x *Model_AggregateClassificationMetrics) String() string

type Model_ArimaFittingMetrics

ARIMA model fitting metrics.

type Model_ArimaFittingMetrics struct {

    // Log-likelihood.
    LogLikelihood float64 `protobuf:"fixed64,1,opt,name=log_likelihood,json=logLikelihood,proto3" json:"log_likelihood,omitempty"`
    // AIC.
    Aic float64 `protobuf:"fixed64,2,opt,name=aic,proto3" json:"aic,omitempty"`
    // Variance.
    Variance float64 `protobuf:"fixed64,3,opt,name=variance,proto3" json:"variance,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_ArimaFittingMetrics) Descriptor

func (*Model_ArimaFittingMetrics) Descriptor() ([]byte, []int)

Deprecated: Use Model_ArimaFittingMetrics.ProtoReflect.Descriptor instead.

func (*Model_ArimaFittingMetrics) GetAic

func (x *Model_ArimaFittingMetrics) GetAic() float64

func (*Model_ArimaFittingMetrics) GetLogLikelihood

func (x *Model_ArimaFittingMetrics) GetLogLikelihood() float64

func (*Model_ArimaFittingMetrics) GetVariance

func (x *Model_ArimaFittingMetrics) GetVariance() float64

func (*Model_ArimaFittingMetrics) ProtoMessage

func (*Model_ArimaFittingMetrics) ProtoMessage()

func (*Model_ArimaFittingMetrics) ProtoReflect

func (x *Model_ArimaFittingMetrics) ProtoReflect() protoreflect.Message

func (*Model_ArimaFittingMetrics) Reset

func (x *Model_ArimaFittingMetrics) Reset()

func (*Model_ArimaFittingMetrics) String

func (x *Model_ArimaFittingMetrics) String() string

type Model_ArimaForecastingMetrics

Model evaluation metrics for ARIMA forecasting models.

type Model_ArimaForecastingMetrics struct {

    // Non-seasonal order.
    //
    // Deprecated: Do not use.
    NonSeasonalOrder []*Model_ArimaOrder `protobuf:"bytes,1,rep,name=non_seasonal_order,json=nonSeasonalOrder,proto3" json:"non_seasonal_order,omitempty"`
    // Arima model fitting metrics.
    //
    // Deprecated: Do not use.
    ArimaFittingMetrics []*Model_ArimaFittingMetrics `protobuf:"bytes,2,rep,name=arima_fitting_metrics,json=arimaFittingMetrics,proto3" json:"arima_fitting_metrics,omitempty"`
    // Seasonal periods. Repeated because multiple periods are supported for one
    // time series.
    //
    // Deprecated: Do not use.
    SeasonalPeriods []Model_SeasonalPeriod_SeasonalPeriodType `protobuf:"varint,3,rep,packed,name=seasonal_periods,json=seasonalPeriods,proto3,enum=google.cloud.bigquery.v2.Model_SeasonalPeriod_SeasonalPeriodType" json:"seasonal_periods,omitempty"`
    // Whether Arima model fitted with drift or not. It is always false when d
    // is not 1.
    //
    // Deprecated: Do not use.
    HasDrift []bool `protobuf:"varint,4,rep,packed,name=has_drift,json=hasDrift,proto3" json:"has_drift,omitempty"`
    // Id to differentiate different time series for the large-scale case.
    //
    // Deprecated: Do not use.
    TimeSeriesId []string `protobuf:"bytes,5,rep,name=time_series_id,json=timeSeriesId,proto3" json:"time_series_id,omitempty"`
    // Repeated as there can be many metric sets (one for each model) in
    // auto-arima and the large-scale case.
    ArimaSingleModelForecastingMetrics []*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics `protobuf:"bytes,6,rep,name=arima_single_model_forecasting_metrics,json=arimaSingleModelForecastingMetrics,proto3" json:"arima_single_model_forecasting_metrics,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_ArimaForecastingMetrics) Descriptor

func (*Model_ArimaForecastingMetrics) Descriptor() ([]byte, []int)

Deprecated: Use Model_ArimaForecastingMetrics.ProtoReflect.Descriptor instead.

func (*Model_ArimaForecastingMetrics) GetArimaFittingMetrics

func (x *Model_ArimaForecastingMetrics) GetArimaFittingMetrics() []*Model_ArimaFittingMetrics

Deprecated: Do not use.

func (*Model_ArimaForecastingMetrics) GetArimaSingleModelForecastingMetrics

func (x *Model_ArimaForecastingMetrics) GetArimaSingleModelForecastingMetrics() []*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics

func (*Model_ArimaForecastingMetrics) GetHasDrift

func (x *Model_ArimaForecastingMetrics) GetHasDrift() []bool

Deprecated: Do not use.

func (*Model_ArimaForecastingMetrics) GetNonSeasonalOrder

func (x *Model_ArimaForecastingMetrics) GetNonSeasonalOrder() []*Model_ArimaOrder

Deprecated: Do not use.

func (*Model_ArimaForecastingMetrics) GetSeasonalPeriods

func (x *Model_ArimaForecastingMetrics) GetSeasonalPeriods() []Model_SeasonalPeriod_SeasonalPeriodType

Deprecated: Do not use.

func (*Model_ArimaForecastingMetrics) GetTimeSeriesId

func (x *Model_ArimaForecastingMetrics) GetTimeSeriesId() []string

Deprecated: Do not use.

func (*Model_ArimaForecastingMetrics) ProtoMessage

func (*Model_ArimaForecastingMetrics) ProtoMessage()

func (*Model_ArimaForecastingMetrics) ProtoReflect

func (x *Model_ArimaForecastingMetrics) ProtoReflect() protoreflect.Message

func (*Model_ArimaForecastingMetrics) Reset

func (x *Model_ArimaForecastingMetrics) Reset()

func (*Model_ArimaForecastingMetrics) String

func (x *Model_ArimaForecastingMetrics) String() string

type Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics

Model evaluation metrics for a single ARIMA forecasting model.

type Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics struct {

    // Non-seasonal order.
    NonSeasonalOrder *Model_ArimaOrder `protobuf:"bytes,1,opt,name=non_seasonal_order,json=nonSeasonalOrder,proto3" json:"non_seasonal_order,omitempty"`
    // Arima fitting metrics.
    ArimaFittingMetrics *Model_ArimaFittingMetrics `protobuf:"bytes,2,opt,name=arima_fitting_metrics,json=arimaFittingMetrics,proto3" json:"arima_fitting_metrics,omitempty"`
    // Is arima model fitted with drift or not. It is always false when d
    // is not 1.
    HasDrift bool `protobuf:"varint,3,opt,name=has_drift,json=hasDrift,proto3" json:"has_drift,omitempty"`
    // The time_series_id value for this time series. It will be one of
    // the unique values from the time_series_id_column specified during
    // ARIMA model training. Only present when time_series_id_column
    // training option was used.
    TimeSeriesId string `protobuf:"bytes,4,opt,name=time_series_id,json=timeSeriesId,proto3" json:"time_series_id,omitempty"`
    // The tuple of time_series_ids identifying this time series. It will
    // be one of the unique tuples of values present in the
    // time_series_id_columns specified during ARIMA model training. Only
    // present when time_series_id_columns training option was used and
    // the order of values here are same as the order of
    // time_series_id_columns.
    TimeSeriesIds []string `protobuf:"bytes,9,rep,name=time_series_ids,json=timeSeriesIds,proto3" json:"time_series_ids,omitempty"`
    // Seasonal periods. Repeated because multiple periods are supported
    // for one time series.
    SeasonalPeriods []Model_SeasonalPeriod_SeasonalPeriodType `protobuf:"varint,5,rep,packed,name=seasonal_periods,json=seasonalPeriods,proto3,enum=google.cloud.bigquery.v2.Model_SeasonalPeriod_SeasonalPeriodType" json:"seasonal_periods,omitempty"`
    // If true, holiday_effect is a part of time series decomposition result.
    HasHolidayEffect *wrapperspb.BoolValue `protobuf:"bytes,6,opt,name=has_holiday_effect,json=hasHolidayEffect,proto3" json:"has_holiday_effect,omitempty"`
    // If true, spikes_and_dips is a part of time series decomposition result.
    HasSpikesAndDips *wrapperspb.BoolValue `protobuf:"bytes,7,opt,name=has_spikes_and_dips,json=hasSpikesAndDips,proto3" json:"has_spikes_and_dips,omitempty"`
    // If true, step_changes is a part of time series decomposition result.
    HasStepChanges *wrapperspb.BoolValue `protobuf:"bytes,8,opt,name=has_step_changes,json=hasStepChanges,proto3" json:"has_step_changes,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) Descriptor

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) Descriptor() ([]byte, []int)

Deprecated: Use Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics.ProtoReflect.Descriptor instead.

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetArimaFittingMetrics

func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetArimaFittingMetrics() *Model_ArimaFittingMetrics

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetHasDrift

func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetHasDrift() bool

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetHasHolidayEffect

func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetHasHolidayEffect() *wrapperspb.BoolValue

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetHasSpikesAndDips

func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetHasSpikesAndDips() *wrapperspb.BoolValue

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetHasStepChanges

func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetHasStepChanges() *wrapperspb.BoolValue

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetNonSeasonalOrder

func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetNonSeasonalOrder() *Model_ArimaOrder

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetSeasonalPeriods

func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetSeasonalPeriods() []Model_SeasonalPeriod_SeasonalPeriodType

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetTimeSeriesId

func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetTimeSeriesId() string

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetTimeSeriesIds

func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) GetTimeSeriesIds() []string

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) ProtoMessage

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) ProtoMessage()

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) ProtoReflect

func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) ProtoReflect() protoreflect.Message

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) Reset

func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) Reset()

func (*Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) String

func (x *Model_ArimaForecastingMetrics_ArimaSingleModelForecastingMetrics) String() string

type Model_ArimaOrder

Arima order, can be used for both non-seasonal and seasonal parts.

type Model_ArimaOrder struct {

    // Order of the autoregressive part.
    P int64 `protobuf:"varint,1,opt,name=p,proto3" json:"p,omitempty"`
    // Order of the differencing part.
    D int64 `protobuf:"varint,2,opt,name=d,proto3" json:"d,omitempty"`
    // Order of the moving-average part.
    Q int64 `protobuf:"varint,3,opt,name=q,proto3" json:"q,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_ArimaOrder) Descriptor

func (*Model_ArimaOrder) Descriptor() ([]byte, []int)

Deprecated: Use Model_ArimaOrder.ProtoReflect.Descriptor instead.

func (*Model_ArimaOrder) GetD

func (x *Model_ArimaOrder) GetD() int64

func (*Model_ArimaOrder) GetP

func (x *Model_ArimaOrder) GetP() int64

func (*Model_ArimaOrder) GetQ

func (x *Model_ArimaOrder) GetQ() int64

func (*Model_ArimaOrder) ProtoMessage

func (*Model_ArimaOrder) ProtoMessage()

func (*Model_ArimaOrder) ProtoReflect

func (x *Model_ArimaOrder) ProtoReflect() protoreflect.Message

func (*Model_ArimaOrder) Reset

func (x *Model_ArimaOrder) Reset()

func (*Model_ArimaOrder) String

func (x *Model_ArimaOrder) String() string

type Model_BinaryClassificationMetrics

Evaluation metrics for binary classification/classifier models.

type Model_BinaryClassificationMetrics struct {

    // Aggregate classification metrics.
    AggregateClassificationMetrics *Model_AggregateClassificationMetrics `protobuf:"bytes,1,opt,name=aggregate_classification_metrics,json=aggregateClassificationMetrics,proto3" json:"aggregate_classification_metrics,omitempty"`
    // Binary confusion matrix at multiple thresholds.
    BinaryConfusionMatrixList []*Model_BinaryClassificationMetrics_BinaryConfusionMatrix `protobuf:"bytes,2,rep,name=binary_confusion_matrix_list,json=binaryConfusionMatrixList,proto3" json:"binary_confusion_matrix_list,omitempty"`
    // Label representing the positive class.
    PositiveLabel string `protobuf:"bytes,3,opt,name=positive_label,json=positiveLabel,proto3" json:"positive_label,omitempty"`
    // Label representing the negative class.
    NegativeLabel string `protobuf:"bytes,4,opt,name=negative_label,json=negativeLabel,proto3" json:"negative_label,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_BinaryClassificationMetrics) Descriptor

func (*Model_BinaryClassificationMetrics) Descriptor() ([]byte, []int)

Deprecated: Use Model_BinaryClassificationMetrics.ProtoReflect.Descriptor instead.

func (*Model_BinaryClassificationMetrics) GetAggregateClassificationMetrics

func (x *Model_BinaryClassificationMetrics) GetAggregateClassificationMetrics() *Model_AggregateClassificationMetrics

func (*Model_BinaryClassificationMetrics) GetBinaryConfusionMatrixList

func (x *Model_BinaryClassificationMetrics) GetBinaryConfusionMatrixList() []*Model_BinaryClassificationMetrics_BinaryConfusionMatrix

func (*Model_BinaryClassificationMetrics) GetNegativeLabel

func (x *Model_BinaryClassificationMetrics) GetNegativeLabel() string

func (*Model_BinaryClassificationMetrics) GetPositiveLabel

func (x *Model_BinaryClassificationMetrics) GetPositiveLabel() string

func (*Model_BinaryClassificationMetrics) ProtoMessage

func (*Model_BinaryClassificationMetrics) ProtoMessage()

func (*Model_BinaryClassificationMetrics) ProtoReflect

func (x *Model_BinaryClassificationMetrics) ProtoReflect() protoreflect.Message

func (*Model_BinaryClassificationMetrics) Reset

func (x *Model_BinaryClassificationMetrics) Reset()

func (*Model_BinaryClassificationMetrics) String

func (x *Model_BinaryClassificationMetrics) String() string

type Model_BinaryClassificationMetrics_BinaryConfusionMatrix

Confusion matrix for binary classification models.

type Model_BinaryClassificationMetrics_BinaryConfusionMatrix struct {

    // Threshold value used when computing each of the following metric.
    PositiveClassThreshold *wrapperspb.DoubleValue `protobuf:"bytes,1,opt,name=positive_class_threshold,json=positiveClassThreshold,proto3" json:"positive_class_threshold,omitempty"`
    // Number of true samples predicted as true.
    TruePositives *wrapperspb.Int64Value `protobuf:"bytes,2,opt,name=true_positives,json=truePositives,proto3" json:"true_positives,omitempty"`
    // Number of false samples predicted as true.
    FalsePositives *wrapperspb.Int64Value `protobuf:"bytes,3,opt,name=false_positives,json=falsePositives,proto3" json:"false_positives,omitempty"`
    // Number of true samples predicted as false.
    TrueNegatives *wrapperspb.Int64Value `protobuf:"bytes,4,opt,name=true_negatives,json=trueNegatives,proto3" json:"true_negatives,omitempty"`
    // Number of false samples predicted as false.
    FalseNegatives *wrapperspb.Int64Value `protobuf:"bytes,5,opt,name=false_negatives,json=falseNegatives,proto3" json:"false_negatives,omitempty"`
    // The fraction of actual positive predictions that had positive actual
    // labels.
    Precision *wrapperspb.DoubleValue `protobuf:"bytes,6,opt,name=precision,proto3" json:"precision,omitempty"`
    // The fraction of actual positive labels that were given a positive
    // prediction.
    Recall *wrapperspb.DoubleValue `protobuf:"bytes,7,opt,name=recall,proto3" json:"recall,omitempty"`
    // The equally weighted average of recall and precision.
    F1Score *wrapperspb.DoubleValue `protobuf:"bytes,8,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"`
    // The fraction of predictions given the correct label.
    Accuracy *wrapperspb.DoubleValue `protobuf:"bytes,9,opt,name=accuracy,proto3" json:"accuracy,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) Descriptor

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) Descriptor() ([]byte, []int)

Deprecated: Use Model_BinaryClassificationMetrics_BinaryConfusionMatrix.ProtoReflect.Descriptor instead.

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetAccuracy

func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetAccuracy() *wrapperspb.DoubleValue

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetF1Score

func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetF1Score() *wrapperspb.DoubleValue

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetFalseNegatives

func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetFalseNegatives() *wrapperspb.Int64Value

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetFalsePositives

func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetFalsePositives() *wrapperspb.Int64Value

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetPositiveClassThreshold

func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetPositiveClassThreshold() *wrapperspb.DoubleValue

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetPrecision

func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetPrecision() *wrapperspb.DoubleValue

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetRecall

func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetRecall() *wrapperspb.DoubleValue

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetTrueNegatives

func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetTrueNegatives() *wrapperspb.Int64Value

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetTruePositives

func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) GetTruePositives() *wrapperspb.Int64Value

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) ProtoMessage

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) ProtoMessage()

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) ProtoReflect

func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) ProtoReflect() protoreflect.Message

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) Reset

func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) Reset()

func (*Model_BinaryClassificationMetrics_BinaryConfusionMatrix) String

func (x *Model_BinaryClassificationMetrics_BinaryConfusionMatrix) String() string

type Model_ClusteringMetrics

Evaluation metrics for clustering models.

type Model_ClusteringMetrics struct {

    // Davies-Bouldin index.
    DaviesBouldinIndex *wrapperspb.DoubleValue `protobuf:"bytes,1,opt,name=davies_bouldin_index,json=daviesBouldinIndex,proto3" json:"davies_bouldin_index,omitempty"`
    // Mean of squared distances between each sample to its cluster centroid.
    MeanSquaredDistance *wrapperspb.DoubleValue `protobuf:"bytes,2,opt,name=mean_squared_distance,json=meanSquaredDistance,proto3" json:"mean_squared_distance,omitempty"`
    // Information for all clusters.
    Clusters []*Model_ClusteringMetrics_Cluster `protobuf:"bytes,3,rep,name=clusters,proto3" json:"clusters,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_ClusteringMetrics) Descriptor

func (*Model_ClusteringMetrics) Descriptor() ([]byte, []int)

Deprecated: Use Model_ClusteringMetrics.ProtoReflect.Descriptor instead.

func (*Model_ClusteringMetrics) GetClusters

func (x *Model_ClusteringMetrics) GetClusters() []*Model_ClusteringMetrics_Cluster

func (*Model_ClusteringMetrics) GetDaviesBouldinIndex

func (x *Model_ClusteringMetrics) GetDaviesBouldinIndex() *wrapperspb.DoubleValue

func (*Model_ClusteringMetrics) GetMeanSquaredDistance

func (x *Model_ClusteringMetrics) GetMeanSquaredDistance() *wrapperspb.DoubleValue

func (*Model_ClusteringMetrics) ProtoMessage

func (*Model_ClusteringMetrics) ProtoMessage()

func (*Model_ClusteringMetrics) ProtoReflect

func (x *Model_ClusteringMetrics) ProtoReflect() protoreflect.Message

func (*Model_ClusteringMetrics) Reset

func (x *Model_ClusteringMetrics) Reset()

func (*Model_ClusteringMetrics) String

func (x *Model_ClusteringMetrics) String() string

type Model_ClusteringMetrics_Cluster

Message containing the information about one cluster.

type Model_ClusteringMetrics_Cluster struct {

    // Centroid id.
    CentroidId int64 `protobuf:"varint,1,opt,name=centroid_id,json=centroidId,proto3" json:"centroid_id,omitempty"`
    // Values of highly variant features for this cluster.
    FeatureValues []*Model_ClusteringMetrics_Cluster_FeatureValue `protobuf:"bytes,2,rep,name=feature_values,json=featureValues,proto3" json:"feature_values,omitempty"`
    // Count of training data rows that were assigned to this cluster.
    Count *wrapperspb.Int64Value `protobuf:"bytes,3,opt,name=count,proto3" json:"count,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_ClusteringMetrics_Cluster) Descriptor

func (*Model_ClusteringMetrics_Cluster) Descriptor() ([]byte, []int)

Deprecated: Use Model_ClusteringMetrics_Cluster.ProtoReflect.Descriptor instead.

func (*Model_ClusteringMetrics_Cluster) GetCentroidId

func (x *Model_ClusteringMetrics_Cluster) GetCentroidId() int64

func (*Model_ClusteringMetrics_Cluster) GetCount

func (x *Model_ClusteringMetrics_Cluster) GetCount() *wrapperspb.Int64Value

func (*Model_ClusteringMetrics_Cluster) GetFeatureValues

func (x *Model_ClusteringMetrics_Cluster) GetFeatureValues() []*Model_ClusteringMetrics_Cluster_FeatureValue

func (*Model_ClusteringMetrics_Cluster) ProtoMessage

func (*Model_ClusteringMetrics_Cluster) ProtoMessage()

func (*Model_ClusteringMetrics_Cluster) ProtoReflect

func (x *Model_ClusteringMetrics_Cluster) ProtoReflect() protoreflect.Message

func (*Model_ClusteringMetrics_Cluster) Reset

func (x *Model_ClusteringMetrics_Cluster) Reset()

func (*Model_ClusteringMetrics_Cluster) String

func (x *Model_ClusteringMetrics_Cluster) String() string

type Model_ClusteringMetrics_Cluster_FeatureValue

Representative value of a single feature within the cluster.

type Model_ClusteringMetrics_Cluster_FeatureValue struct {

    // The feature column name.
    FeatureColumn string `protobuf:"bytes,1,opt,name=feature_column,json=featureColumn,proto3" json:"feature_column,omitempty"`
    // Types that are assignable to Value:
    //	*Model_ClusteringMetrics_Cluster_FeatureValue_NumericalValue
    //	*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_
    Value isModel_ClusteringMetrics_Cluster_FeatureValue_Value `protobuf_oneof:"value"`
    // contains filtered or unexported fields
}

func (*Model_ClusteringMetrics_Cluster_FeatureValue) Descriptor

func (*Model_ClusteringMetrics_Cluster_FeatureValue) Descriptor() ([]byte, []int)

Deprecated: Use Model_ClusteringMetrics_Cluster_FeatureValue.ProtoReflect.Descriptor instead.

func (*Model_ClusteringMetrics_Cluster_FeatureValue) GetCategoricalValue

func (x *Model_ClusteringMetrics_Cluster_FeatureValue) GetCategoricalValue() *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue

func (*Model_ClusteringMetrics_Cluster_FeatureValue) GetFeatureColumn

func (x *Model_ClusteringMetrics_Cluster_FeatureValue) GetFeatureColumn() string

func (*Model_ClusteringMetrics_Cluster_FeatureValue) GetNumericalValue

func (x *Model_ClusteringMetrics_Cluster_FeatureValue) GetNumericalValue() *wrapperspb.DoubleValue

func (*Model_ClusteringMetrics_Cluster_FeatureValue) GetValue

func (m *Model_ClusteringMetrics_Cluster_FeatureValue) GetValue() isModel_ClusteringMetrics_Cluster_FeatureValue_Value

func (*Model_ClusteringMetrics_Cluster_FeatureValue) ProtoMessage

func (*Model_ClusteringMetrics_Cluster_FeatureValue) ProtoMessage()

func (*Model_ClusteringMetrics_Cluster_FeatureValue) ProtoReflect

func (x *Model_ClusteringMetrics_Cluster_FeatureValue) ProtoReflect() protoreflect.Message

func (*Model_ClusteringMetrics_Cluster_FeatureValue) Reset

func (x *Model_ClusteringMetrics_Cluster_FeatureValue) Reset()

func (*Model_ClusteringMetrics_Cluster_FeatureValue) String

func (x *Model_ClusteringMetrics_Cluster_FeatureValue) String() string

type Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue

Representative value of a categorical feature.

type Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue struct {

    // Counts of all categories for the categorical feature. If there are
    // more than ten categories, we return top ten (by count) and return
    // one more CategoryCount with category "_OTHER_" and count as
    // aggregate counts of remaining categories.
    CategoryCounts []*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount `protobuf:"bytes,1,rep,name=category_counts,json=categoryCounts,proto3" json:"category_counts,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) Descriptor

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) Descriptor() ([]byte, []int)

Deprecated: Use Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue.ProtoReflect.Descriptor instead.

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) GetCategoryCounts

func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) GetCategoryCounts() []*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) ProtoMessage

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) ProtoMessage()

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) ProtoReflect

func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) ProtoReflect() protoreflect.Message

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) Reset

func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) Reset()

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) String

func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue) String() string

type Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_

type Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_ struct {
    // The categorical feature value.
    CategoricalValue *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue `protobuf:"bytes,3,opt,name=categorical_value,json=categoricalValue,proto3,oneof"`
}

type Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount

Represents the count of a single category within the cluster.

type Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount struct {

    // The name of category.
    Category string `protobuf:"bytes,1,opt,name=category,proto3" json:"category,omitempty"`
    // The count of training samples matching the category within the
    // cluster.
    Count *wrapperspb.Int64Value `protobuf:"bytes,2,opt,name=count,proto3" json:"count,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) Descriptor

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) Descriptor() ([]byte, []int)

Deprecated: Use Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount.ProtoReflect.Descriptor instead.

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) GetCategory

func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) GetCategory() string

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) GetCount

func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) GetCount() *wrapperspb.Int64Value

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) ProtoMessage

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) ProtoMessage()

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) ProtoReflect

func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) ProtoReflect() protoreflect.Message

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) Reset

func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) Reset()

func (*Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) String

func (x *Model_ClusteringMetrics_Cluster_FeatureValue_CategoricalValue_CategoryCount) String() string

type Model_ClusteringMetrics_Cluster_FeatureValue_NumericalValue

type Model_ClusteringMetrics_Cluster_FeatureValue_NumericalValue struct {
    // The numerical feature value. This is the centroid value for this
    // feature.
    NumericalValue *wrapperspb.DoubleValue `protobuf:"bytes,2,opt,name=numerical_value,json=numericalValue,proto3,oneof"`
}

type Model_DataFrequency

Type of supported data frequency for time series forecasting models.

type Model_DataFrequency int32
const (
    Model_DATA_FREQUENCY_UNSPECIFIED Model_DataFrequency = 0
    // Automatically inferred from timestamps.
    Model_AUTO_FREQUENCY Model_DataFrequency = 1
    // Yearly data.
    Model_YEARLY Model_DataFrequency = 2
    // Quarterly data.
    Model_QUARTERLY Model_DataFrequency = 3
    // Monthly data.
    Model_MONTHLY Model_DataFrequency = 4
    // Weekly data.
    Model_WEEKLY Model_DataFrequency = 5
    // Daily data.
    Model_DAILY Model_DataFrequency = 6
    // Hourly data.
    Model_HOURLY Model_DataFrequency = 7
    // Per-minute data.
    Model_PER_MINUTE Model_DataFrequency = 8
)

func (Model_DataFrequency) Descriptor

func (Model_DataFrequency) Descriptor() protoreflect.EnumDescriptor

func (Model_DataFrequency) Enum

func (x Model_DataFrequency) Enum() *Model_DataFrequency

func (Model_DataFrequency) EnumDescriptor

func (Model_DataFrequency) EnumDescriptor() ([]byte, []int)

Deprecated: Use Model_DataFrequency.Descriptor instead.

func (Model_DataFrequency) Number

func (x Model_DataFrequency) Number() protoreflect.EnumNumber

func (Model_DataFrequency) String

func (x Model_DataFrequency) String() string

func (Model_DataFrequency) Type

func (Model_DataFrequency) Type() protoreflect.EnumType

type Model_DataSplitMethod

Indicates the method to split input data into multiple tables.

type Model_DataSplitMethod int32
const (
    Model_DATA_SPLIT_METHOD_UNSPECIFIED Model_DataSplitMethod = 0
    // Splits data randomly.
    Model_RANDOM Model_DataSplitMethod = 1
    // Splits data with the user provided tags.
    Model_CUSTOM Model_DataSplitMethod = 2
    // Splits data sequentially.
    Model_SEQUENTIAL Model_DataSplitMethod = 3
    // Data split will be skipped.
    Model_NO_SPLIT Model_DataSplitMethod = 4
    // Splits data automatically: Uses NO_SPLIT if the data size is small.
    // Otherwise uses RANDOM.
    Model_AUTO_SPLIT Model_DataSplitMethod = 5
)

func (Model_DataSplitMethod) Descriptor

func (Model_DataSplitMethod) Descriptor() protoreflect.EnumDescriptor

func (Model_DataSplitMethod) Enum

func (x Model_DataSplitMethod) Enum() *Model_DataSplitMethod

func (Model_DataSplitMethod) EnumDescriptor

func (Model_DataSplitMethod) EnumDescriptor() ([]byte, []int)

Deprecated: Use Model_DataSplitMethod.Descriptor instead.

func (Model_DataSplitMethod) Number

func (x Model_DataSplitMethod) Number() protoreflect.EnumNumber

func (Model_DataSplitMethod) String

func (x Model_DataSplitMethod) String() string

func (Model_DataSplitMethod) Type

func (Model_DataSplitMethod) Type() protoreflect.EnumType

type Model_DataSplitResult

Data split result. This contains references to the training and evaluation data tables that were used to train the model.

type Model_DataSplitResult struct {

    // Table reference of the training data after split.
    TrainingTable *TableReference `protobuf:"bytes,1,opt,name=training_table,json=trainingTable,proto3" json:"training_table,omitempty"`
    // Table reference of the evaluation data after split.
    EvaluationTable *TableReference `protobuf:"bytes,2,opt,name=evaluation_table,json=evaluationTable,proto3" json:"evaluation_table,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_DataSplitResult) Descriptor

func (*Model_DataSplitResult) Descriptor() ([]byte, []int)

Deprecated: Use Model_DataSplitResult.ProtoReflect.Descriptor instead.

func (*Model_DataSplitResult) GetEvaluationTable

func (x *Model_DataSplitResult) GetEvaluationTable() *TableReference

func (*Model_DataSplitResult) GetTrainingTable

func (x *Model_DataSplitResult) GetTrainingTable() *TableReference

func (*Model_DataSplitResult) ProtoMessage

func (*Model_DataSplitResult) ProtoMessage()

func (*Model_DataSplitResult) ProtoReflect

func (x *Model_DataSplitResult) ProtoReflect() protoreflect.Message

func (*Model_DataSplitResult) Reset

func (x *Model_DataSplitResult) Reset()

func (*Model_DataSplitResult) String

func (x *Model_DataSplitResult) String() string

type Model_DistanceType

Distance metric used to compute the distance between two points.

type Model_DistanceType int32
const (
    Model_DISTANCE_TYPE_UNSPECIFIED Model_DistanceType = 0
    // Eculidean distance.
    Model_EUCLIDEAN Model_DistanceType = 1
    // Cosine distance.
    Model_COSINE Model_DistanceType = 2
)

func (Model_DistanceType) Descriptor

func (Model_DistanceType) Descriptor() protoreflect.EnumDescriptor

func (Model_DistanceType) Enum

func (x Model_DistanceType) Enum() *Model_DistanceType

func (Model_DistanceType) EnumDescriptor

func (Model_DistanceType) EnumDescriptor() ([]byte, []int)

Deprecated: Use Model_DistanceType.Descriptor instead.

func (Model_DistanceType) Number

func (x Model_DistanceType) Number() protoreflect.EnumNumber

func (Model_DistanceType) String

func (x Model_DistanceType) String() string

func (Model_DistanceType) Type

func (Model_DistanceType) Type() protoreflect.EnumType

type Model_EvaluationMetrics

Evaluation metrics of a model. These are either computed on all training data or just the eval data based on whether eval data was used during training. These are not present for imported models.

type Model_EvaluationMetrics struct {

    // Types that are assignable to Metrics:
    //	*Model_EvaluationMetrics_RegressionMetrics
    //	*Model_EvaluationMetrics_BinaryClassificationMetrics
    //	*Model_EvaluationMetrics_MultiClassClassificationMetrics
    //	*Model_EvaluationMetrics_ClusteringMetrics
    //	*Model_EvaluationMetrics_RankingMetrics
    //	*Model_EvaluationMetrics_ArimaForecastingMetrics
    Metrics isModel_EvaluationMetrics_Metrics `protobuf_oneof:"metrics"`
    // contains filtered or unexported fields
}

func (*Model_EvaluationMetrics) Descriptor

func (*Model_EvaluationMetrics) Descriptor() ([]byte, []int)

Deprecated: Use Model_EvaluationMetrics.ProtoReflect.Descriptor instead.

func (*Model_EvaluationMetrics) GetArimaForecastingMetrics

func (x *Model_EvaluationMetrics) GetArimaForecastingMetrics() *Model_ArimaForecastingMetrics

func (*Model_EvaluationMetrics) GetBinaryClassificationMetrics

func (x *Model_EvaluationMetrics) GetBinaryClassificationMetrics() *Model_BinaryClassificationMetrics

func (*Model_EvaluationMetrics) GetClusteringMetrics

func (x *Model_EvaluationMetrics) GetClusteringMetrics() *Model_ClusteringMetrics

func (*Model_EvaluationMetrics) GetMetrics

func (m *Model_EvaluationMetrics) GetMetrics() isModel_EvaluationMetrics_Metrics

func (*Model_EvaluationMetrics) GetMultiClassClassificationMetrics

func (x *Model_EvaluationMetrics) GetMultiClassClassificationMetrics() *Model_MultiClassClassificationMetrics

func (*Model_EvaluationMetrics) GetRankingMetrics

func (x *Model_EvaluationMetrics) GetRankingMetrics() *Model_RankingMetrics

func (*Model_EvaluationMetrics) GetRegressionMetrics

func (x *Model_EvaluationMetrics) GetRegressionMetrics() *Model_RegressionMetrics

func (*Model_EvaluationMetrics) ProtoMessage

func (*Model_EvaluationMetrics) ProtoMessage()

func (*Model_EvaluationMetrics) ProtoReflect

func (x *Model_EvaluationMetrics) ProtoReflect() protoreflect.Message

func (*Model_EvaluationMetrics) Reset

func (x *Model_EvaluationMetrics) Reset()

func (*Model_EvaluationMetrics) String

func (x *Model_EvaluationMetrics) String() string

type Model_EvaluationMetrics_ArimaForecastingMetrics

type Model_EvaluationMetrics_ArimaForecastingMetrics struct {
    // Populated for ARIMA models.
    ArimaForecastingMetrics *Model_ArimaForecastingMetrics `protobuf:"bytes,6,opt,name=arima_forecasting_metrics,json=arimaForecastingMetrics,proto3,oneof"`
}

type Model_EvaluationMetrics_BinaryClassificationMetrics

type Model_EvaluationMetrics_BinaryClassificationMetrics struct {
    // Populated for binary classification/classifier models.
    BinaryClassificationMetrics *Model_BinaryClassificationMetrics `protobuf:"bytes,2,opt,name=binary_classification_metrics,json=binaryClassificationMetrics,proto3,oneof"`
}

type Model_EvaluationMetrics_ClusteringMetrics

type Model_EvaluationMetrics_ClusteringMetrics struct {
    // Populated for clustering models.
    ClusteringMetrics *Model_ClusteringMetrics `protobuf:"bytes,4,opt,name=clustering_metrics,json=clusteringMetrics,proto3,oneof"`
}

type Model_EvaluationMetrics_MultiClassClassificationMetrics

type Model_EvaluationMetrics_MultiClassClassificationMetrics struct {
    // Populated for multi-class classification/classifier models.
    MultiClassClassificationMetrics *Model_MultiClassClassificationMetrics `protobuf:"bytes,3,opt,name=multi_class_classification_metrics,json=multiClassClassificationMetrics,proto3,oneof"`
}

type Model_EvaluationMetrics_RankingMetrics

type Model_EvaluationMetrics_RankingMetrics struct {
    // Populated for implicit feedback type matrix factorization models.
    RankingMetrics *Model_RankingMetrics `protobuf:"bytes,5,opt,name=ranking_metrics,json=rankingMetrics,proto3,oneof"`
}

type Model_EvaluationMetrics_RegressionMetrics

type Model_EvaluationMetrics_RegressionMetrics struct {
    // Populated for regression models and explicit feedback type matrix
    // factorization models.
    RegressionMetrics *Model_RegressionMetrics `protobuf:"bytes,1,opt,name=regression_metrics,json=regressionMetrics,proto3,oneof"`
}

type Model_FeedbackType

Indicates the training algorithm to use for matrix factorization models.

type Model_FeedbackType int32
const (
    Model_FEEDBACK_TYPE_UNSPECIFIED Model_FeedbackType = 0
    // Use weighted-als for implicit feedback problems.
    Model_IMPLICIT Model_FeedbackType = 1
    // Use nonweighted-als for explicit feedback problems.
    Model_EXPLICIT Model_FeedbackType = 2
)

func (Model_FeedbackType) Descriptor

func (Model_FeedbackType) Descriptor() protoreflect.EnumDescriptor

func (Model_FeedbackType) Enum

func (x Model_FeedbackType) Enum() *Model_FeedbackType

func (Model_FeedbackType) EnumDescriptor

func (Model_FeedbackType) EnumDescriptor() ([]byte, []int)

Deprecated: Use Model_FeedbackType.Descriptor instead.

func (Model_FeedbackType) Number

func (x Model_FeedbackType) Number() protoreflect.EnumNumber

func (Model_FeedbackType) String

func (x Model_FeedbackType) String() string

func (Model_FeedbackType) Type

func (Model_FeedbackType) Type() protoreflect.EnumType

type Model_GlobalExplanation

Global explanations containing the top most important features after training.

type Model_GlobalExplanation struct {

    // A list of the top global explanations. Sorted by absolute value of
    // attribution in descending order.
    Explanations []*Model_GlobalExplanation_Explanation `protobuf:"bytes,1,rep,name=explanations,proto3" json:"explanations,omitempty"`
    // Class label for this set of global explanations. Will be empty/null for
    // binary logistic and linear regression models. Sorted alphabetically in
    // descending order.
    ClassLabel string `protobuf:"bytes,2,opt,name=class_label,json=classLabel,proto3" json:"class_label,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_GlobalExplanation) Descriptor

func (*Model_GlobalExplanation) Descriptor() ([]byte, []int)

Deprecated: Use Model_GlobalExplanation.ProtoReflect.Descriptor instead.

func (*Model_GlobalExplanation) GetClassLabel

func (x *Model_GlobalExplanation) GetClassLabel() string

func (*Model_GlobalExplanation) GetExplanations

func (x *Model_GlobalExplanation) GetExplanations() []*Model_GlobalExplanation_Explanation

func (*Model_GlobalExplanation) ProtoMessage

func (*Model_GlobalExplanation) ProtoMessage()

func (*Model_GlobalExplanation) ProtoReflect

func (x *Model_GlobalExplanation) ProtoReflect() protoreflect.Message

func (*Model_GlobalExplanation) Reset

func (x *Model_GlobalExplanation) Reset()

func (*Model_GlobalExplanation) String

func (x *Model_GlobalExplanation) String() string

type Model_GlobalExplanation_Explanation

Explanation for a single feature.

type Model_GlobalExplanation_Explanation struct {

    // Full name of the feature. For non-numerical features, will be
    // formatted like <column_name>.<encoded_feature_name>. Overall size of
    // feature name will always be truncated to first 120 characters.
    FeatureName string `protobuf:"bytes,1,opt,name=feature_name,json=featureName,proto3" json:"feature_name,omitempty"`
    // Attribution of feature.
    Attribution *wrapperspb.DoubleValue `protobuf:"bytes,2,opt,name=attribution,proto3" json:"attribution,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_GlobalExplanation_Explanation) Descriptor

func (*Model_GlobalExplanation_Explanation) Descriptor() ([]byte, []int)

Deprecated: Use Model_GlobalExplanation_Explanation.ProtoReflect.Descriptor instead.

func (*Model_GlobalExplanation_Explanation) GetAttribution

func (x *Model_GlobalExplanation_Explanation) GetAttribution() *wrapperspb.DoubleValue

func (*Model_GlobalExplanation_Explanation) GetFeatureName

func (x *Model_GlobalExplanation_Explanation) GetFeatureName() string

func (*Model_GlobalExplanation_Explanation) ProtoMessage

func (*Model_GlobalExplanation_Explanation) ProtoMessage()

func (*Model_GlobalExplanation_Explanation) ProtoReflect

func (x *Model_GlobalExplanation_Explanation) ProtoReflect() protoreflect.Message

func (*Model_GlobalExplanation_Explanation) Reset

func (x *Model_GlobalExplanation_Explanation) Reset()

func (*Model_GlobalExplanation_Explanation) String

func (x *Model_GlobalExplanation_Explanation) String() string

type Model_HolidayRegion

Type of supported holiday regions for time series forecasting models.

type Model_HolidayRegion int32
const (
    // Holiday region unspecified.
    Model_HOLIDAY_REGION_UNSPECIFIED Model_HolidayRegion = 0
    // Global.
    Model_GLOBAL Model_HolidayRegion = 1
    // North America.
    Model_NA Model_HolidayRegion = 2
    // Japan and Asia Pacific: Korea, Greater China, India, Australia, and New
    // Zealand.
    Model_JAPAC Model_HolidayRegion = 3
    // Europe, the Middle East and Africa.
    Model_EMEA Model_HolidayRegion = 4
    // Latin America and the Caribbean.
    Model_LAC Model_HolidayRegion = 5
    // United Arab Emirates
    Model_AE Model_HolidayRegion = 6
    // Argentina
    Model_AR Model_HolidayRegion = 7
    // Austria
    Model_AT Model_HolidayRegion = 8
    // Australia
    Model_AU Model_HolidayRegion = 9
    // Belgium
    Model_BE Model_HolidayRegion = 10
    // Brazil
    Model_BR Model_HolidayRegion = 11
    // Canada
    Model_CA Model_HolidayRegion = 12
    // Switzerland
    Model_CH Model_HolidayRegion = 13
    // Chile
    Model_CL Model_HolidayRegion = 14
    // China
    Model_CN Model_HolidayRegion = 15
    // Colombia
    Model_CO Model_HolidayRegion = 16
    // Czechoslovakia
    Model_CS Model_HolidayRegion = 17
    // Czech Republic
    Model_CZ Model_HolidayRegion = 18
    // Germany
    Model_DE Model_HolidayRegion = 19
    // Denmark
    Model_DK Model_HolidayRegion = 20
    // Algeria
    Model_DZ Model_HolidayRegion = 21
    // Ecuador
    Model_EC Model_HolidayRegion = 22
    // Estonia
    Model_EE Model_HolidayRegion = 23
    // Egypt
    Model_EG Model_HolidayRegion = 24
    // Spain
    Model_ES Model_HolidayRegion = 25
    // Finland
    Model_FI Model_HolidayRegion = 26
    // France
    Model_FR Model_HolidayRegion = 27
    // Great Britain (United Kingdom)
    Model_GB Model_HolidayRegion = 28
    // Greece
    Model_GR Model_HolidayRegion = 29
    // Hong Kong
    Model_HK Model_HolidayRegion = 30
    // Hungary
    Model_HU Model_HolidayRegion = 31
    // Indonesia
    Model_ID Model_HolidayRegion = 32
    // Ireland
    Model_IE Model_HolidayRegion = 33
    // Israel
    Model_IL Model_HolidayRegion = 34
    // India
    Model_IN Model_HolidayRegion = 35
    // Iran
    Model_IR Model_HolidayRegion = 36
    // Italy
    Model_IT Model_HolidayRegion = 37
    // Japan
    Model_JP Model_HolidayRegion = 38
    // Korea (South)
    Model_KR Model_HolidayRegion = 39
    // Latvia
    Model_LV Model_HolidayRegion = 40
    // Morocco
    Model_MA Model_HolidayRegion = 41
    // Mexico
    Model_MX Model_HolidayRegion = 42
    // Malaysia
    Model_MY Model_HolidayRegion = 43
    // Nigeria
    Model_NG Model_HolidayRegion = 44
    // Netherlands
    Model_NL Model_HolidayRegion = 45
    // Norway
    Model_NO Model_HolidayRegion = 46
    // New Zealand
    Model_NZ Model_HolidayRegion = 47
    // Peru
    Model_PE Model_HolidayRegion = 48
    // Philippines
    Model_PH Model_HolidayRegion = 49
    // Pakistan
    Model_PK Model_HolidayRegion = 50
    // Poland
    Model_PL Model_HolidayRegion = 51
    // Portugal
    Model_PT Model_HolidayRegion = 52
    // Romania
    Model_RO Model_HolidayRegion = 53
    // Serbia
    Model_RS Model_HolidayRegion = 54
    // Russian Federation
    Model_RU Model_HolidayRegion = 55
    // Saudi Arabia
    Model_SA Model_HolidayRegion = 56
    // Sweden
    Model_SE Model_HolidayRegion = 57
    // Singapore
    Model_SG Model_HolidayRegion = 58
    // Slovenia
    Model_SI Model_HolidayRegion = 59
    // Slovakia
    Model_SK Model_HolidayRegion = 60
    // Thailand
    Model_TH Model_HolidayRegion = 61
    // Turkey
    Model_TR Model_HolidayRegion = 62
    // Taiwan
    Model_TW Model_HolidayRegion = 63
    // Ukraine
    Model_UA Model_HolidayRegion = 64
    // United States
    Model_US Model_HolidayRegion = 65
    // Venezuela
    Model_VE Model_HolidayRegion = 66
    // Viet Nam
    Model_VN Model_HolidayRegion = 67
    // South Africa
    Model_ZA Model_HolidayRegion = 68
)

func (Model_HolidayRegion) Descriptor

func (Model_HolidayRegion) Descriptor() protoreflect.EnumDescriptor

func (Model_HolidayRegion) Enum

func (x Model_HolidayRegion) Enum() *Model_HolidayRegion

func (Model_HolidayRegion) EnumDescriptor

func (Model_HolidayRegion) EnumDescriptor() ([]byte, []int)

Deprecated: Use Model_HolidayRegion.Descriptor instead.

func (Model_HolidayRegion) Number

func (x Model_HolidayRegion) Number() protoreflect.EnumNumber

func (Model_HolidayRegion) String

func (x Model_HolidayRegion) String() string

func (Model_HolidayRegion) Type

func (Model_HolidayRegion) Type() protoreflect.EnumType

type Model_KmeansEnums

type Model_KmeansEnums struct {
    // contains filtered or unexported fields
}

func (*Model_KmeansEnums) Descriptor

func (*Model_KmeansEnums) Descriptor() ([]byte, []int)

Deprecated: Use Model_KmeansEnums.ProtoReflect.Descriptor instead.

func (*Model_KmeansEnums) ProtoMessage

func (*Model_KmeansEnums) ProtoMessage()

func (*Model_KmeansEnums) ProtoReflect

func (x *Model_KmeansEnums) ProtoReflect() protoreflect.Message

func (*Model_KmeansEnums) Reset

func (x *Model_KmeansEnums) Reset()

func (*Model_KmeansEnums) String

func (x *Model_KmeansEnums) String() string

type Model_KmeansEnums_KmeansInitializationMethod

Indicates the method used to initialize the centroids for KMeans clustering algorithm.

type Model_KmeansEnums_KmeansInitializationMethod int32
const (
    // Unspecified initialization method.
    Model_KmeansEnums_KMEANS_INITIALIZATION_METHOD_UNSPECIFIED Model_KmeansEnums_KmeansInitializationMethod = 0
    // Initializes the centroids randomly.
    Model_KmeansEnums_RANDOM Model_KmeansEnums_KmeansInitializationMethod = 1
    // Initializes the centroids using data specified in
    // kmeans_initialization_column.
    Model_KmeansEnums_CUSTOM Model_KmeansEnums_KmeansInitializationMethod = 2
    // Initializes with kmeans++.
    Model_KmeansEnums_KMEANS_PLUS_PLUS Model_KmeansEnums_KmeansInitializationMethod = 3
)

func (Model_KmeansEnums_KmeansInitializationMethod) Descriptor

func (Model_KmeansEnums_KmeansInitializationMethod) Descriptor() protoreflect.EnumDescriptor

func (Model_KmeansEnums_KmeansInitializationMethod) Enum

func (x Model_KmeansEnums_KmeansInitializationMethod) Enum() *Model_KmeansEnums_KmeansInitializationMethod

func (Model_KmeansEnums_KmeansInitializationMethod) EnumDescriptor

func (Model_KmeansEnums_KmeansInitializationMethod) EnumDescriptor() ([]byte, []int)

Deprecated: Use Model_KmeansEnums_KmeansInitializationMethod.Descriptor instead.

func (Model_KmeansEnums_KmeansInitializationMethod) Number

func (x Model_KmeansEnums_KmeansInitializationMethod) Number() protoreflect.EnumNumber

func (Model_KmeansEnums_KmeansInitializationMethod) String

func (x Model_KmeansEnums_KmeansInitializationMethod) String() string

func (Model_KmeansEnums_KmeansInitializationMethod) Type

func (Model_KmeansEnums_KmeansInitializationMethod) Type() protoreflect.EnumType

type Model_LearnRateStrategy

Indicates the learning rate optimization strategy to use.

type Model_LearnRateStrategy int32
const (
    Model_LEARN_RATE_STRATEGY_UNSPECIFIED Model_LearnRateStrategy = 0
    // Use line search to determine learning rate.
    Model_LINE_SEARCH Model_LearnRateStrategy = 1
    // Use a constant learning rate.
    Model_CONSTANT Model_LearnRateStrategy = 2
)

func (Model_LearnRateStrategy) Descriptor

func (Model_LearnRateStrategy) Descriptor() protoreflect.EnumDescriptor

func (Model_LearnRateStrategy) Enum

func (x Model_LearnRateStrategy) Enum() *Model_LearnRateStrategy

func (Model_LearnRateStrategy) EnumDescriptor

func (Model_LearnRateStrategy) EnumDescriptor() ([]byte, []int)

Deprecated: Use Model_LearnRateStrategy.Descriptor instead.

func (Model_LearnRateStrategy) Number

func (x Model_LearnRateStrategy) Number() protoreflect.EnumNumber

func (Model_LearnRateStrategy) String

func (x Model_LearnRateStrategy) String() string

func (Model_LearnRateStrategy) Type

func (Model_LearnRateStrategy) Type() protoreflect.EnumType

type Model_LossType

Loss metric to evaluate model training performance.

type Model_LossType int32
const (
    Model_LOSS_TYPE_UNSPECIFIED Model_LossType = 0
    // Mean squared loss, used for linear regression.
    Model_MEAN_SQUARED_LOSS Model_LossType = 1
    // Mean log loss, used for logistic regression.
    Model_MEAN_LOG_LOSS Model_LossType = 2
)

func (Model_LossType) Descriptor

func (Model_LossType) Descriptor() protoreflect.EnumDescriptor

func (Model_LossType) Enum

func (x Model_LossType) Enum() *Model_LossType

func (Model_LossType) EnumDescriptor

func (Model_LossType) EnumDescriptor() ([]byte, []int)

Deprecated: Use Model_LossType.Descriptor instead.

func (Model_LossType) Number

func (x Model_LossType) Number() protoreflect.EnumNumber

func (Model_LossType) String

func (x Model_LossType) String() string

func (Model_LossType) Type

func (Model_LossType) Type() protoreflect.EnumType

type Model_ModelType

Indicates the type of the Model.

type Model_ModelType int32
const (
    Model_MODEL_TYPE_UNSPECIFIED Model_ModelType = 0
    // Linear regression model.
    Model_LINEAR_REGRESSION Model_ModelType = 1
    // Logistic regression based classification model.
    Model_LOGISTIC_REGRESSION Model_ModelType = 2
    // K-means clustering model.
    Model_KMEANS Model_ModelType = 3
    // Matrix factorization model.
    Model_MATRIX_FACTORIZATION Model_ModelType = 4
    // DNN classifier model.
    Model_DNN_CLASSIFIER Model_ModelType = 5
    // An imported TensorFlow model.
    Model_TENSORFLOW Model_ModelType = 6
    // DNN regressor model.
    Model_DNN_REGRESSOR Model_ModelType = 7
    // Boosted tree regressor model.
    Model_BOOSTED_TREE_REGRESSOR Model_ModelType = 9
    // Boosted tree classifier model.
    Model_BOOSTED_TREE_CLASSIFIER Model_ModelType = 10
    // ARIMA model.
    Model_ARIMA Model_ModelType = 11
    // [Beta] AutoML Tables regression model.
    Model_AUTOML_REGRESSOR Model_ModelType = 12
    // [Beta] AutoML Tables classification model.
    Model_AUTOML_CLASSIFIER Model_ModelType = 13
    // New name for the ARIMA model.
    Model_ARIMA_PLUS Model_ModelType = 19
)

func (Model_ModelType) Descriptor

func (Model_ModelType) Descriptor() protoreflect.EnumDescriptor

func (Model_ModelType) Enum

func (x Model_ModelType) Enum() *Model_ModelType

func (Model_ModelType) EnumDescriptor

func (Model_ModelType) EnumDescriptor() ([]byte, []int)

Deprecated: Use Model_ModelType.Descriptor instead.

func (Model_ModelType) Number

func (x Model_ModelType) Number() protoreflect.EnumNumber

func (Model_ModelType) String

func (x Model_ModelType) String() string

func (Model_ModelType) Type

func (Model_ModelType) Type() protoreflect.EnumType

type Model_MultiClassClassificationMetrics

Evaluation metrics for multi-class classification/classifier models.

type Model_MultiClassClassificationMetrics struct {

    // Aggregate classification metrics.
    AggregateClassificationMetrics *Model_AggregateClassificationMetrics `protobuf:"bytes,1,opt,name=aggregate_classification_metrics,json=aggregateClassificationMetrics,proto3" json:"aggregate_classification_metrics,omitempty"`
    // Confusion matrix at different thresholds.
    ConfusionMatrixList []*Model_MultiClassClassificationMetrics_ConfusionMatrix `protobuf:"bytes,2,rep,name=confusion_matrix_list,json=confusionMatrixList,proto3" json:"confusion_matrix_list,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_MultiClassClassificationMetrics) Descriptor

func (*Model_MultiClassClassificationMetrics) Descriptor() ([]byte, []int)

Deprecated: Use Model_MultiClassClassificationMetrics.ProtoReflect.Descriptor instead.

func (*Model_MultiClassClassificationMetrics) GetAggregateClassificationMetrics

func (x *Model_MultiClassClassificationMetrics) GetAggregateClassificationMetrics() *Model_AggregateClassificationMetrics

func (*Model_MultiClassClassificationMetrics) GetConfusionMatrixList

func (x *Model_MultiClassClassificationMetrics) GetConfusionMatrixList() []*Model_MultiClassClassificationMetrics_ConfusionMatrix

func (*Model_MultiClassClassificationMetrics) ProtoMessage

func (*Model_MultiClassClassificationMetrics) ProtoMessage()

func (*Model_MultiClassClassificationMetrics) ProtoReflect

func (x *Model_MultiClassClassificationMetrics) ProtoReflect() protoreflect.Message

func (*Model_MultiClassClassificationMetrics) Reset

func (x *Model_MultiClassClassificationMetrics) Reset()

func (*Model_MultiClassClassificationMetrics) String

func (x *Model_MultiClassClassificationMetrics) String() string

type Model_MultiClassClassificationMetrics_ConfusionMatrix

Confusion matrix for multi-class classification models.

type Model_MultiClassClassificationMetrics_ConfusionMatrix struct {

    // Confidence threshold used when computing the entries of the
    // confusion matrix.
    ConfidenceThreshold *wrapperspb.DoubleValue `protobuf:"bytes,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"`
    // One row per actual label.
    Rows []*Model_MultiClassClassificationMetrics_ConfusionMatrix_Row `protobuf:"bytes,2,rep,name=rows,proto3" json:"rows,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix) Descriptor

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix) Descriptor() ([]byte, []int)

Deprecated: Use Model_MultiClassClassificationMetrics_ConfusionMatrix.ProtoReflect.Descriptor instead.

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix) GetConfidenceThreshold

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix) GetConfidenceThreshold() *wrapperspb.DoubleValue

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix) GetRows

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix) GetRows() []*Model_MultiClassClassificationMetrics_ConfusionMatrix_Row

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix) ProtoMessage

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix) ProtoMessage()

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix) ProtoReflect

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix) ProtoReflect() protoreflect.Message

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix) Reset

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix) Reset()

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix) String

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix) String() string

type Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry

A single entry in the confusion matrix.

type Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry struct {

    // The predicted label. For confidence_threshold > 0, we will
    // also add an entry indicating the number of items under the
    // confidence threshold.
    PredictedLabel string `protobuf:"bytes,1,opt,name=predicted_label,json=predictedLabel,proto3" json:"predicted_label,omitempty"`
    // Number of items being predicted as this label.
    ItemCount *wrapperspb.Int64Value `protobuf:"bytes,2,opt,name=item_count,json=itemCount,proto3" json:"item_count,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) Descriptor

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) Descriptor() ([]byte, []int)

Deprecated: Use Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry.ProtoReflect.Descriptor instead.

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) GetItemCount

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) GetItemCount() *wrapperspb.Int64Value

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) GetPredictedLabel

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) GetPredictedLabel() string

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) ProtoMessage

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) ProtoMessage()

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) ProtoReflect

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) ProtoReflect() protoreflect.Message

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) Reset

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) Reset()

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) String

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry) String() string

type Model_MultiClassClassificationMetrics_ConfusionMatrix_Row

A single row in the confusion matrix.

type Model_MultiClassClassificationMetrics_ConfusionMatrix_Row struct {

    // The original label of this row.
    ActualLabel string `protobuf:"bytes,1,opt,name=actual_label,json=actualLabel,proto3" json:"actual_label,omitempty"`
    // Info describing predicted label distribution.
    Entries []*Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry `protobuf:"bytes,2,rep,name=entries,proto3" json:"entries,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) Descriptor

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) Descriptor() ([]byte, []int)

Deprecated: Use Model_MultiClassClassificationMetrics_ConfusionMatrix_Row.ProtoReflect.Descriptor instead.

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) GetActualLabel

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) GetActualLabel() string

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) GetEntries

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) GetEntries() []*Model_MultiClassClassificationMetrics_ConfusionMatrix_Entry

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) ProtoMessage

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) ProtoMessage()

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) ProtoReflect

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) ProtoReflect() protoreflect.Message

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) Reset

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) Reset()

func (*Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) String

func (x *Model_MultiClassClassificationMetrics_ConfusionMatrix_Row) String() string

type Model_OptimizationStrategy

Indicates the optimization strategy used for training.

type Model_OptimizationStrategy int32
const (
    Model_OPTIMIZATION_STRATEGY_UNSPECIFIED Model_OptimizationStrategy = 0
    // Uses an iterative batch gradient descent algorithm.
    Model_BATCH_GRADIENT_DESCENT Model_OptimizationStrategy = 1
    // Uses a normal equation to solve linear regression problem.
    Model_NORMAL_EQUATION Model_OptimizationStrategy = 2
)

func (Model_OptimizationStrategy) Descriptor

func (Model_OptimizationStrategy) Descriptor() protoreflect.EnumDescriptor

func (Model_OptimizationStrategy) Enum

func (x Model_OptimizationStrategy) Enum() *Model_OptimizationStrategy

func (Model_OptimizationStrategy) EnumDescriptor

func (Model_OptimizationStrategy) EnumDescriptor() ([]byte, []int)

Deprecated: Use Model_OptimizationStrategy.Descriptor instead.

func (Model_OptimizationStrategy) Number

func (x Model_OptimizationStrategy) Number() protoreflect.EnumNumber

func (Model_OptimizationStrategy) String

func (x Model_OptimizationStrategy) String() string

func (Model_OptimizationStrategy) Type

func (Model_OptimizationStrategy) Type() protoreflect.EnumType

type Model_RankingMetrics

Evaluation metrics used by weighted-ALS models specified by feedback_type=implicit.

type Model_RankingMetrics struct {

    // Calculates a precision per user for all the items by ranking them and
    // then averages all the precisions across all the users.
    MeanAveragePrecision *wrapperspb.DoubleValue `protobuf:"bytes,1,opt,name=mean_average_precision,json=meanAveragePrecision,proto3" json:"mean_average_precision,omitempty"`
    // Similar to the mean squared error computed in regression and explicit
    // recommendation models except instead of computing the rating directly,
    // the output from evaluate is computed against a preference which is 1 or 0
    // depending on if the rating exists or not.
    MeanSquaredError *wrapperspb.DoubleValue `protobuf:"bytes,2,opt,name=mean_squared_error,json=meanSquaredError,proto3" json:"mean_squared_error,omitempty"`
    // A metric to determine the goodness of a ranking calculated from the
    // predicted confidence by comparing it to an ideal rank measured by the
    // original ratings.
    NormalizedDiscountedCumulativeGain *wrapperspb.DoubleValue `protobuf:"bytes,3,opt,name=normalized_discounted_cumulative_gain,json=normalizedDiscountedCumulativeGain,proto3" json:"normalized_discounted_cumulative_gain,omitempty"`
    // Determines the goodness of a ranking by computing the percentile rank
    // from the predicted confidence and dividing it by the original rank.
    AverageRank *wrapperspb.DoubleValue `protobuf:"bytes,4,opt,name=average_rank,json=averageRank,proto3" json:"average_rank,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_RankingMetrics) Descriptor

func (*Model_RankingMetrics) Descriptor() ([]byte, []int)

Deprecated: Use Model_RankingMetrics.ProtoReflect.Descriptor instead.

func (*Model_RankingMetrics) GetAverageRank

func (x *Model_RankingMetrics) GetAverageRank() *wrapperspb.DoubleValue

func (*Model_RankingMetrics) GetMeanAveragePrecision

func (x *Model_RankingMetrics) GetMeanAveragePrecision() *wrapperspb.DoubleValue

func (*Model_RankingMetrics) GetMeanSquaredError

func (x *Model_RankingMetrics) GetMeanSquaredError() *wrapperspb.DoubleValue

func (*Model_RankingMetrics) GetNormalizedDiscountedCumulativeGain

func (x *Model_RankingMetrics) GetNormalizedDiscountedCumulativeGain() *wrapperspb.DoubleValue

func (*Model_RankingMetrics) ProtoMessage

func (*Model_RankingMetrics) ProtoMessage()

func (*Model_RankingMetrics) ProtoReflect

func (x *Model_RankingMetrics) ProtoReflect() protoreflect.Message

func (*Model_RankingMetrics) Reset

func (x *Model_RankingMetrics) Reset()

func (*Model_RankingMetrics) String

func (x *Model_RankingMetrics) String() string

type Model_RegressionMetrics

Evaluation metrics for regression and explicit feedback type matrix factorization models.

type Model_RegressionMetrics struct {

    // Mean absolute error.
    MeanAbsoluteError *wrapperspb.DoubleValue `protobuf:"bytes,1,opt,name=mean_absolute_error,json=meanAbsoluteError,proto3" json:"mean_absolute_error,omitempty"`
    // Mean squared error.
    MeanSquaredError *wrapperspb.DoubleValue `protobuf:"bytes,2,opt,name=mean_squared_error,json=meanSquaredError,proto3" json:"mean_squared_error,omitempty"`
    // Mean squared log error.
    MeanSquaredLogError *wrapperspb.DoubleValue `protobuf:"bytes,3,opt,name=mean_squared_log_error,json=meanSquaredLogError,proto3" json:"mean_squared_log_error,omitempty"`
    // Median absolute error.
    MedianAbsoluteError *wrapperspb.DoubleValue `protobuf:"bytes,4,opt,name=median_absolute_error,json=medianAbsoluteError,proto3" json:"median_absolute_error,omitempty"`
    // R^2 score. This corresponds to r2_score in ML.EVALUATE.
    RSquared *wrapperspb.DoubleValue `protobuf:"bytes,5,opt,name=r_squared,json=rSquared,proto3" json:"r_squared,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_RegressionMetrics) Descriptor

func (*Model_RegressionMetrics) Descriptor() ([]byte, []int)

Deprecated: Use Model_RegressionMetrics.ProtoReflect.Descriptor instead.

func (*Model_RegressionMetrics) GetMeanAbsoluteError

func (x *Model_RegressionMetrics) GetMeanAbsoluteError() *wrapperspb.DoubleValue

func (*Model_RegressionMetrics) GetMeanSquaredError

func (x *Model_RegressionMetrics) GetMeanSquaredError() *wrapperspb.DoubleValue

func (*Model_RegressionMetrics) GetMeanSquaredLogError

func (x *Model_RegressionMetrics) GetMeanSquaredLogError() *wrapperspb.DoubleValue

func (*Model_RegressionMetrics) GetMedianAbsoluteError

func (x *Model_RegressionMetrics) GetMedianAbsoluteError() *wrapperspb.DoubleValue

func (*Model_RegressionMetrics) GetRSquared

func (x *Model_RegressionMetrics) GetRSquared() *wrapperspb.DoubleValue

func (*Model_RegressionMetrics) ProtoMessage

func (*Model_RegressionMetrics) ProtoMessage()

func (*Model_RegressionMetrics) ProtoReflect

func (x *Model_RegressionMetrics) ProtoReflect() protoreflect.Message

func (*Model_RegressionMetrics) Reset

func (x *Model_RegressionMetrics) Reset()

func (*Model_RegressionMetrics) String

func (x *Model_RegressionMetrics) String() string

type Model_SeasonalPeriod

type Model_SeasonalPeriod struct {
    // contains filtered or unexported fields
}

func (*Model_SeasonalPeriod) Descriptor

func (*Model_SeasonalPeriod) Descriptor() ([]byte, []int)

Deprecated: Use Model_SeasonalPeriod.ProtoReflect.Descriptor instead.

func (*Model_SeasonalPeriod) ProtoMessage

func (*Model_SeasonalPeriod) ProtoMessage()

func (*Model_SeasonalPeriod) ProtoReflect

func (x *Model_SeasonalPeriod) ProtoReflect() protoreflect.Message

func (*Model_SeasonalPeriod) Reset

func (x *Model_SeasonalPeriod) Reset()

func (*Model_SeasonalPeriod) String

func (x *Model_SeasonalPeriod) String() string

type Model_SeasonalPeriod_SeasonalPeriodType

type Model_SeasonalPeriod_SeasonalPeriodType int32
const (
    Model_SeasonalPeriod_SEASONAL_PERIOD_TYPE_UNSPECIFIED Model_SeasonalPeriod_SeasonalPeriodType = 0
    // No seasonality
    Model_SeasonalPeriod_NO_SEASONALITY Model_SeasonalPeriod_SeasonalPeriodType = 1
    // Daily period, 24 hours.
    Model_SeasonalPeriod_DAILY Model_SeasonalPeriod_SeasonalPeriodType = 2
    // Weekly period, 7 days.
    Model_SeasonalPeriod_WEEKLY Model_SeasonalPeriod_SeasonalPeriodType = 3
    // Monthly period, 30 days or irregular.
    Model_SeasonalPeriod_MONTHLY Model_SeasonalPeriod_SeasonalPeriodType = 4
    // Quarterly period, 90 days or irregular.
    Model_SeasonalPeriod_QUARTERLY Model_SeasonalPeriod_SeasonalPeriodType = 5
    // Yearly period, 365 days or irregular.
    Model_SeasonalPeriod_YEARLY Model_SeasonalPeriod_SeasonalPeriodType = 6
)

func (Model_SeasonalPeriod_SeasonalPeriodType) Descriptor

func (Model_SeasonalPeriod_SeasonalPeriodType) Descriptor() protoreflect.EnumDescriptor

func (Model_SeasonalPeriod_SeasonalPeriodType) Enum

func (x Model_SeasonalPeriod_SeasonalPeriodType) Enum() *Model_SeasonalPeriod_SeasonalPeriodType

func (Model_SeasonalPeriod_SeasonalPeriodType) EnumDescriptor

func (Model_SeasonalPeriod_SeasonalPeriodType) EnumDescriptor() ([]byte, []int)

Deprecated: Use Model_SeasonalPeriod_SeasonalPeriodType.Descriptor instead.

func (Model_SeasonalPeriod_SeasonalPeriodType) Number

func (x Model_SeasonalPeriod_SeasonalPeriodType) Number() protoreflect.EnumNumber

func (Model_SeasonalPeriod_SeasonalPeriodType) String

func (x Model_SeasonalPeriod_SeasonalPeriodType) String() string

func (Model_SeasonalPeriod_SeasonalPeriodType) Type

func (Model_SeasonalPeriod_SeasonalPeriodType) Type() protoreflect.EnumType

type Model_TrainingRun

Information about a single training query run for the model.

type Model_TrainingRun struct {

    // Options that were used for this training run, includes
    // user specified and default options that were used.
    TrainingOptions *Model_TrainingRun_TrainingOptions `protobuf:"bytes,1,opt,name=training_options,json=trainingOptions,proto3" json:"training_options,omitempty"`
    // The start time of this training run.
    StartTime *timestamppb.Timestamp `protobuf:"bytes,8,opt,name=start_time,json=startTime,proto3" json:"start_time,omitempty"`
    // Output of each iteration run, results.size() <= max_iterations.
    Results []*Model_TrainingRun_IterationResult `protobuf:"bytes,6,rep,name=results,proto3" json:"results,omitempty"`
    // The evaluation metrics over training/eval data that were computed at the
    // end of training.
    EvaluationMetrics *Model_EvaluationMetrics `protobuf:"bytes,7,opt,name=evaluation_metrics,json=evaluationMetrics,proto3" json:"evaluation_metrics,omitempty"`
    // Data split result of the training run. Only set when the input data is
    // actually split.
    DataSplitResult *Model_DataSplitResult `protobuf:"bytes,9,opt,name=data_split_result,json=dataSplitResult,proto3" json:"data_split_result,omitempty"`
    // Global explanations for important features of the model. For multi-class
    // models, there is one entry for each label class. For other models, there
    // is only one entry in the list.
    GlobalExplanations []*Model_GlobalExplanation `protobuf:"bytes,10,rep,name=global_explanations,json=globalExplanations,proto3" json:"global_explanations,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_TrainingRun) Descriptor

func (*Model_TrainingRun) Descriptor() ([]byte, []int)

Deprecated: Use Model_TrainingRun.ProtoReflect.Descriptor instead.

func (*Model_TrainingRun) GetDataSplitResult

func (x *Model_TrainingRun) GetDataSplitResult() *Model_DataSplitResult

func (*Model_TrainingRun) GetEvaluationMetrics

func (x *Model_TrainingRun) GetEvaluationMetrics() *Model_EvaluationMetrics

func (*Model_TrainingRun) GetGlobalExplanations

func (x *Model_TrainingRun) GetGlobalExplanations() []*Model_GlobalExplanation

func (*Model_TrainingRun) GetResults

func (x *Model_TrainingRun) GetResults() []*Model_TrainingRun_IterationResult

func (*Model_TrainingRun) GetStartTime

func (x *Model_TrainingRun) GetStartTime() *timestamppb.Timestamp

func (*Model_TrainingRun) GetTrainingOptions

func (x *Model_TrainingRun) GetTrainingOptions() *Model_TrainingRun_TrainingOptions

func (*Model_TrainingRun) ProtoMessage

func (*Model_TrainingRun) ProtoMessage()

func (*Model_TrainingRun) ProtoReflect

func (x *Model_TrainingRun) ProtoReflect() protoreflect.Message

func (*Model_TrainingRun) Reset

func (x *Model_TrainingRun) Reset()

func (*Model_TrainingRun) String

func (x *Model_TrainingRun) String() string

type Model_TrainingRun_IterationResult

Information about a single iteration of the training run.

type Model_TrainingRun_IterationResult struct {

    // Index of the iteration, 0 based.
    Index *wrapperspb.Int32Value `protobuf:"bytes,1,opt,name=index,proto3" json:"index,omitempty"`
    // Time taken to run the iteration in milliseconds.
    DurationMs *wrapperspb.Int64Value `protobuf:"bytes,4,opt,name=duration_ms,json=durationMs,proto3" json:"duration_ms,omitempty"`
    // Loss computed on the training data at the end of iteration.
    TrainingLoss *wrapperspb.DoubleValue `protobuf:"bytes,5,opt,name=training_loss,json=trainingLoss,proto3" json:"training_loss,omitempty"`
    // Loss computed on the eval data at the end of iteration.
    EvalLoss *wrapperspb.DoubleValue `protobuf:"bytes,6,opt,name=eval_loss,json=evalLoss,proto3" json:"eval_loss,omitempty"`
    // Learn rate used for this iteration.
    LearnRate float64 `protobuf:"fixed64,7,opt,name=learn_rate,json=learnRate,proto3" json:"learn_rate,omitempty"`
    // Information about top clusters for clustering models.
    ClusterInfos []*Model_TrainingRun_IterationResult_ClusterInfo `protobuf:"bytes,8,rep,name=cluster_infos,json=clusterInfos,proto3" json:"cluster_infos,omitempty"`
    ArimaResult  *Model_TrainingRun_IterationResult_ArimaResult   `protobuf:"bytes,9,opt,name=arima_result,json=arimaResult,proto3" json:"arima_result,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_TrainingRun_IterationResult) Descriptor

func (*Model_TrainingRun_IterationResult) Descriptor() ([]byte, []int)

Deprecated: Use Model_TrainingRun_IterationResult.ProtoReflect.Descriptor instead.

func (*Model_TrainingRun_IterationResult) GetArimaResult

func (x *Model_TrainingRun_IterationResult) GetArimaResult() *Model_TrainingRun_IterationResult_ArimaResult

func (*Model_TrainingRun_IterationResult) GetClusterInfos

func (x *Model_TrainingRun_IterationResult) GetClusterInfos() []*Model_TrainingRun_IterationResult_ClusterInfo

func (*Model_TrainingRun_IterationResult) GetDurationMs

func (x *Model_TrainingRun_IterationResult) GetDurationMs() *wrapperspb.Int64Value

func (*Model_TrainingRun_IterationResult) GetEvalLoss

func (x *Model_TrainingRun_IterationResult) GetEvalLoss() *wrapperspb.DoubleValue

func (*Model_TrainingRun_IterationResult) GetIndex

func (x *Model_TrainingRun_IterationResult) GetIndex() *wrapperspb.Int32Value

func (*Model_TrainingRun_IterationResult) GetLearnRate

func (x *Model_TrainingRun_IterationResult) GetLearnRate() float64

func (*Model_TrainingRun_IterationResult) GetTrainingLoss

func (x *Model_TrainingRun_IterationResult) GetTrainingLoss() *wrapperspb.DoubleValue

func (*Model_TrainingRun_IterationResult) ProtoMessage

func (*Model_TrainingRun_IterationResult) ProtoMessage()

func (*Model_TrainingRun_IterationResult) ProtoReflect

func (x *Model_TrainingRun_IterationResult) ProtoReflect() protoreflect.Message

func (*Model_TrainingRun_IterationResult) Reset

func (x *Model_TrainingRun_IterationResult) Reset()

func (*Model_TrainingRun_IterationResult) String

func (x *Model_TrainingRun_IterationResult) String() string

type Model_TrainingRun_IterationResult_ArimaResult

(Auto-)arima fitting result. Wrap everything in ArimaResult for easier refactoring if we want to use model-specific iteration results.

type Model_TrainingRun_IterationResult_ArimaResult struct {

    // This message is repeated because there are multiple arima models
    // fitted in auto-arima. For non-auto-arima model, its size is one.
    ArimaModelInfo []*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo `protobuf:"bytes,1,rep,name=arima_model_info,json=arimaModelInfo,proto3" json:"arima_model_info,omitempty"`
    // Seasonal periods. Repeated because multiple periods are supported for
    // one time series.
    SeasonalPeriods []Model_SeasonalPeriod_SeasonalPeriodType `protobuf:"varint,2,rep,packed,name=seasonal_periods,json=seasonalPeriods,proto3,enum=google.cloud.bigquery.v2.Model_SeasonalPeriod_SeasonalPeriodType" json:"seasonal_periods,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_TrainingRun_IterationResult_ArimaResult) Descriptor

func (*Model_TrainingRun_IterationResult_ArimaResult) Descriptor() ([]byte, []int)

Deprecated: Use Model_TrainingRun_IterationResult_ArimaResult.ProtoReflect.Descriptor instead.

func (*Model_TrainingRun_IterationResult_ArimaResult) GetArimaModelInfo

func (x *Model_TrainingRun_IterationResult_ArimaResult) GetArimaModelInfo() []*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo

func (*Model_TrainingRun_IterationResult_ArimaResult) GetSeasonalPeriods

func (x *Model_TrainingRun_IterationResult_ArimaResult) GetSeasonalPeriods() []Model_SeasonalPeriod_SeasonalPeriodType

func (*Model_TrainingRun_IterationResult_ArimaResult) ProtoMessage

func (*Model_TrainingRun_IterationResult_ArimaResult) ProtoMessage()

func (*Model_TrainingRun_IterationResult_ArimaResult) ProtoReflect

func (x *Model_TrainingRun_IterationResult_ArimaResult) ProtoReflect() protoreflect.Message

func (*Model_TrainingRun_IterationResult_ArimaResult) Reset

func (x *Model_TrainingRun_IterationResult_ArimaResult) Reset()

func (*Model_TrainingRun_IterationResult_ArimaResult) String

func (x *Model_TrainingRun_IterationResult_ArimaResult) String() string

type Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients

Arima coefficients.

type Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients struct {

    // Auto-regressive coefficients, an array of double.
    AutoRegressiveCoefficients []float64 `protobuf:"fixed64,1,rep,packed,name=auto_regressive_coefficients,json=autoRegressiveCoefficients,proto3" json:"auto_regressive_coefficients,omitempty"`
    // Moving-average coefficients, an array of double.
    MovingAverageCoefficients []float64 `protobuf:"fixed64,2,rep,packed,name=moving_average_coefficients,json=movingAverageCoefficients,proto3" json:"moving_average_coefficients,omitempty"`
    // Intercept coefficient, just a double not an array.
    InterceptCoefficient float64 `protobuf:"fixed64,3,opt,name=intercept_coefficient,json=interceptCoefficient,proto3" json:"intercept_coefficient,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) Descriptor

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) Descriptor() ([]byte, []int)

Deprecated: Use Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients.ProtoReflect.Descriptor instead.

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) GetAutoRegressiveCoefficients

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) GetAutoRegressiveCoefficients() []float64

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) GetInterceptCoefficient

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) GetInterceptCoefficient() float64

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) GetMovingAverageCoefficients

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) GetMovingAverageCoefficients() []float64

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) ProtoMessage

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) ProtoMessage()

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) ProtoReflect

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) ProtoReflect() protoreflect.Message

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) Reset

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) Reset()

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) String

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients) String() string

type Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo

Arima model information.

type Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo struct {

    // Non-seasonal order.
    NonSeasonalOrder *Model_ArimaOrder `protobuf:"bytes,1,opt,name=non_seasonal_order,json=nonSeasonalOrder,proto3" json:"non_seasonal_order,omitempty"`
    // Arima coefficients.
    ArimaCoefficients *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients `protobuf:"bytes,2,opt,name=arima_coefficients,json=arimaCoefficients,proto3" json:"arima_coefficients,omitempty"`
    // Arima fitting metrics.
    ArimaFittingMetrics *Model_ArimaFittingMetrics `protobuf:"bytes,3,opt,name=arima_fitting_metrics,json=arimaFittingMetrics,proto3" json:"arima_fitting_metrics,omitempty"`
    // Whether Arima model fitted with drift or not. It is always false
    // when d is not 1.
    HasDrift bool `protobuf:"varint,4,opt,name=has_drift,json=hasDrift,proto3" json:"has_drift,omitempty"`
    // The time_series_id value for this time series. It will be one of
    // the unique values from the time_series_id_column specified during
    // ARIMA model training. Only present when time_series_id_column
    // training option was used.
    TimeSeriesId string `protobuf:"bytes,5,opt,name=time_series_id,json=timeSeriesId,proto3" json:"time_series_id,omitempty"`
    // The tuple of time_series_ids identifying this time series. It will
    // be one of the unique tuples of values present in the
    // time_series_id_columns specified during ARIMA model training. Only
    // present when time_series_id_columns training option was used and
    // the order of values here are same as the order of
    // time_series_id_columns.
    TimeSeriesIds []string `protobuf:"bytes,10,rep,name=time_series_ids,json=timeSeriesIds,proto3" json:"time_series_ids,omitempty"`
    // Seasonal periods. Repeated because multiple periods are supported
    // for one time series.
    SeasonalPeriods []Model_SeasonalPeriod_SeasonalPeriodType `protobuf:"varint,6,rep,packed,name=seasonal_periods,json=seasonalPeriods,proto3,enum=google.cloud.bigquery.v2.Model_SeasonalPeriod_SeasonalPeriodType" json:"seasonal_periods,omitempty"`
    // If true, holiday_effect is a part of time series decomposition
    // result.
    HasHolidayEffect *wrapperspb.BoolValue `protobuf:"bytes,7,opt,name=has_holiday_effect,json=hasHolidayEffect,proto3" json:"has_holiday_effect,omitempty"`
    // If true, spikes_and_dips is a part of time series decomposition
    // result.
    HasSpikesAndDips *wrapperspb.BoolValue `protobuf:"bytes,8,opt,name=has_spikes_and_dips,json=hasSpikesAndDips,proto3" json:"has_spikes_and_dips,omitempty"`
    // If true, step_changes is a part of time series decomposition
    // result.
    HasStepChanges *wrapperspb.BoolValue `protobuf:"bytes,9,opt,name=has_step_changes,json=hasStepChanges,proto3" json:"has_step_changes,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) Descriptor

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) Descriptor() ([]byte, []int)

Deprecated: Use Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo.ProtoReflect.Descriptor instead.

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetArimaCoefficients

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetArimaCoefficients() *Model_TrainingRun_IterationResult_ArimaResult_ArimaCoefficients

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetArimaFittingMetrics

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetArimaFittingMetrics() *Model_ArimaFittingMetrics

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetHasDrift

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetHasDrift() bool

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetHasHolidayEffect

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetHasHolidayEffect() *wrapperspb.BoolValue

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetHasSpikesAndDips

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetHasSpikesAndDips() *wrapperspb.BoolValue

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetHasStepChanges

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetHasStepChanges() *wrapperspb.BoolValue

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetNonSeasonalOrder

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetNonSeasonalOrder() *Model_ArimaOrder

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetSeasonalPeriods

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetSeasonalPeriods() []Model_SeasonalPeriod_SeasonalPeriodType

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetTimeSeriesId

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetTimeSeriesId() string

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetTimeSeriesIds

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) GetTimeSeriesIds() []string

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) ProtoMessage

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) ProtoMessage()

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) ProtoReflect

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) ProtoReflect() protoreflect.Message

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) Reset

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) Reset()

func (*Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) String

func (x *Model_TrainingRun_IterationResult_ArimaResult_ArimaModelInfo) String() string

type Model_TrainingRun_IterationResult_ClusterInfo

Information about a single cluster for clustering model.

type Model_TrainingRun_IterationResult_ClusterInfo struct {

    // Centroid id.
    CentroidId int64 `protobuf:"varint,1,opt,name=centroid_id,json=centroidId,proto3" json:"centroid_id,omitempty"`
    // Cluster radius, the average distance from centroid
    // to each point assigned to the cluster.
    ClusterRadius *wrapperspb.DoubleValue `protobuf:"bytes,2,opt,name=cluster_radius,json=clusterRadius,proto3" json:"cluster_radius,omitempty"`
    // Cluster size, the total number of points assigned to the cluster.
    ClusterSize *wrapperspb.Int64Value `protobuf:"bytes,3,opt,name=cluster_size,json=clusterSize,proto3" json:"cluster_size,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_TrainingRun_IterationResult_ClusterInfo) Descriptor

func (*Model_TrainingRun_IterationResult_ClusterInfo) Descriptor() ([]byte, []int)

Deprecated: Use Model_TrainingRun_IterationResult_ClusterInfo.ProtoReflect.Descriptor instead.

func (*Model_TrainingRun_IterationResult_ClusterInfo) GetCentroidId

func (x *Model_TrainingRun_IterationResult_ClusterInfo) GetCentroidId() int64

func (*Model_TrainingRun_IterationResult_ClusterInfo) GetClusterRadius

func (x *Model_TrainingRun_IterationResult_ClusterInfo) GetClusterRadius() *wrapperspb.DoubleValue

func (*Model_TrainingRun_IterationResult_ClusterInfo) GetClusterSize

func (x *Model_TrainingRun_IterationResult_ClusterInfo) GetClusterSize() *wrapperspb.Int64Value

func (*Model_TrainingRun_IterationResult_ClusterInfo) ProtoMessage

func (*Model_TrainingRun_IterationResult_ClusterInfo) ProtoMessage()

func (*Model_TrainingRun_IterationResult_ClusterInfo) ProtoReflect

func (x *Model_TrainingRun_IterationResult_ClusterInfo) ProtoReflect() protoreflect.Message

func (*Model_TrainingRun_IterationResult_ClusterInfo) Reset

func (x *Model_TrainingRun_IterationResult_ClusterInfo) Reset()

func (*Model_TrainingRun_IterationResult_ClusterInfo) String

func (x *Model_TrainingRun_IterationResult_ClusterInfo) String() string

type Model_TrainingRun_TrainingOptions

Options used in model training.

type Model_TrainingRun_TrainingOptions struct {

    // The maximum number of iterations in training. Used only for iterative
    // training algorithms.
    MaxIterations int64 `protobuf:"varint,1,opt,name=max_iterations,json=maxIterations,proto3" json:"max_iterations,omitempty"`
    // Type of loss function used during training run.
    LossType Model_LossType `protobuf:"varint,2,opt,name=loss_type,json=lossType,proto3,enum=google.cloud.bigquery.v2.Model_LossType" json:"loss_type,omitempty"`
    // Learning rate in training. Used only for iterative training algorithms.
    LearnRate float64 `protobuf:"fixed64,3,opt,name=learn_rate,json=learnRate,proto3" json:"learn_rate,omitempty"`
    // L1 regularization coefficient.
    L1Regularization *wrapperspb.DoubleValue `protobuf:"bytes,4,opt,name=l1_regularization,json=l1Regularization,proto3" json:"l1_regularization,omitempty"`
    // L2 regularization coefficient.
    L2Regularization *wrapperspb.DoubleValue `protobuf:"bytes,5,opt,name=l2_regularization,json=l2Regularization,proto3" json:"l2_regularization,omitempty"`
    // When early_stop is true, stops training when accuracy improvement is
    // less than 'min_relative_progress'. Used only for iterative training
    // algorithms.
    MinRelativeProgress *wrapperspb.DoubleValue `protobuf:"bytes,6,opt,name=min_relative_progress,json=minRelativeProgress,proto3" json:"min_relative_progress,omitempty"`
    // Whether to train a model from the last checkpoint.
    WarmStart *wrapperspb.BoolValue `protobuf:"bytes,7,opt,name=warm_start,json=warmStart,proto3" json:"warm_start,omitempty"`
    // Whether to stop early when the loss doesn't improve significantly
    // any more (compared to min_relative_progress). Used only for iterative
    // training algorithms.
    EarlyStop *wrapperspb.BoolValue `protobuf:"bytes,8,opt,name=early_stop,json=earlyStop,proto3" json:"early_stop,omitempty"`
    // Name of input label columns in training data.
    InputLabelColumns []string `protobuf:"bytes,9,rep,name=input_label_columns,json=inputLabelColumns,proto3" json:"input_label_columns,omitempty"`
    // The data split type for training and evaluation, e.g. RANDOM.
    DataSplitMethod Model_DataSplitMethod `protobuf:"varint,10,opt,name=data_split_method,json=dataSplitMethod,proto3,enum=google.cloud.bigquery.v2.Model_DataSplitMethod" json:"data_split_method,omitempty"`
    // The fraction of evaluation data over the whole input data. The rest
    // of data will be used as training data. The format should be double.
    // Accurate to two decimal places.
    // Default value is 0.2.
    DataSplitEvalFraction float64 `protobuf:"fixed64,11,opt,name=data_split_eval_fraction,json=dataSplitEvalFraction,proto3" json:"data_split_eval_fraction,omitempty"`
    // The column to split data with. This column won't be used as a
    // feature.
    // 1. When data_split_method is CUSTOM, the corresponding column should
    // be boolean. The rows with true value tag are eval data, and the false
    // are training data.
    // 2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION
    // rows (from smallest to largest) in the corresponding column are used
    // as training data, and the rest are eval data. It respects the order
    // in Orderable data types:
    // https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-type-properties
    DataSplitColumn string `protobuf:"bytes,12,opt,name=data_split_column,json=dataSplitColumn,proto3" json:"data_split_column,omitempty"`
    // The strategy to determine learn rate for the current iteration.
    LearnRateStrategy Model_LearnRateStrategy `protobuf:"varint,13,opt,name=learn_rate_strategy,json=learnRateStrategy,proto3,enum=google.cloud.bigquery.v2.Model_LearnRateStrategy" json:"learn_rate_strategy,omitempty"`
    // Specifies the initial learning rate for the line search learn rate
    // strategy.
    InitialLearnRate float64 `protobuf:"fixed64,16,opt,name=initial_learn_rate,json=initialLearnRate,proto3" json:"initial_learn_rate,omitempty"`
    // Weights associated with each label class, for rebalancing the
    // training data. Only applicable for classification models.
    LabelClassWeights map[string]float64 `protobuf:"bytes,17,rep,name=label_class_weights,json=labelClassWeights,proto3" json:"label_class_weights,omitempty" protobuf_key:"bytes,1,opt,name=key,proto3" protobuf_val:"fixed64,2,opt,name=value,proto3"`
    // User column specified for matrix factorization models.
    UserColumn string `protobuf:"bytes,18,opt,name=user_column,json=userColumn,proto3" json:"user_column,omitempty"`
    // Item column specified for matrix factorization models.
    ItemColumn string `protobuf:"bytes,19,opt,name=item_column,json=itemColumn,proto3" json:"item_column,omitempty"`
    // Distance type for clustering models.
    DistanceType Model_DistanceType `protobuf:"varint,20,opt,name=distance_type,json=distanceType,proto3,enum=google.cloud.bigquery.v2.Model_DistanceType" json:"distance_type,omitempty"`
    // Number of clusters for clustering models.
    NumClusters int64 `protobuf:"varint,21,opt,name=num_clusters,json=numClusters,proto3" json:"num_clusters,omitempty"`
    // Google Cloud Storage URI from which the model was imported. Only
    // applicable for imported models.
    ModelUri string `protobuf:"bytes,22,opt,name=model_uri,json=modelUri,proto3" json:"model_uri,omitempty"`
    // Optimization strategy for training linear regression models.
    OptimizationStrategy Model_OptimizationStrategy `protobuf:"varint,23,opt,name=optimization_strategy,json=optimizationStrategy,proto3,enum=google.cloud.bigquery.v2.Model_OptimizationStrategy" json:"optimization_strategy,omitempty"`
    // Hidden units for dnn models.
    HiddenUnits []int64 `protobuf:"varint,24,rep,packed,name=hidden_units,json=hiddenUnits,proto3" json:"hidden_units,omitempty"`
    // Batch size for dnn models.
    BatchSize int64 `protobuf:"varint,25,opt,name=batch_size,json=batchSize,proto3" json:"batch_size,omitempty"`
    // Dropout probability for dnn models.
    Dropout *wrapperspb.DoubleValue `protobuf:"bytes,26,opt,name=dropout,proto3" json:"dropout,omitempty"`
    // Maximum depth of a tree for boosted tree models.
    MaxTreeDepth int64 `protobuf:"varint,27,opt,name=max_tree_depth,json=maxTreeDepth,proto3" json:"max_tree_depth,omitempty"`
    // Subsample fraction of the training data to grow tree to prevent
    // overfitting for boosted tree models.
    Subsample float64 `protobuf:"fixed64,28,opt,name=subsample,proto3" json:"subsample,omitempty"`
    // Minimum split loss for boosted tree models.
    MinSplitLoss *wrapperspb.DoubleValue `protobuf:"bytes,29,opt,name=min_split_loss,json=minSplitLoss,proto3" json:"min_split_loss,omitempty"`
    // Num factors specified for matrix factorization models.
    NumFactors int64 `protobuf:"varint,30,opt,name=num_factors,json=numFactors,proto3" json:"num_factors,omitempty"`
    // Feedback type that specifies which algorithm to run for matrix
    // factorization.
    FeedbackType Model_FeedbackType `protobuf:"varint,31,opt,name=feedback_type,json=feedbackType,proto3,enum=google.cloud.bigquery.v2.Model_FeedbackType" json:"feedback_type,omitempty"`
    // Hyperparameter for matrix factoration when implicit feedback type is
    // specified.
    WalsAlpha *wrapperspb.DoubleValue `protobuf:"bytes,32,opt,name=wals_alpha,json=walsAlpha,proto3" json:"wals_alpha,omitempty"`
    // The method used to initialize the centroids for kmeans algorithm.
    KmeansInitializationMethod Model_KmeansEnums_KmeansInitializationMethod `protobuf:"varint,33,opt,name=kmeans_initialization_method,json=kmeansInitializationMethod,proto3,enum=google.cloud.bigquery.v2.Model_KmeansEnums_KmeansInitializationMethod" json:"kmeans_initialization_method,omitempty"`
    // The column used to provide the initial centroids for kmeans algorithm
    // when kmeans_initialization_method is CUSTOM.
    KmeansInitializationColumn string `protobuf:"bytes,34,opt,name=kmeans_initialization_column,json=kmeansInitializationColumn,proto3" json:"kmeans_initialization_column,omitempty"`
    // Column to be designated as time series timestamp for ARIMA model.
    TimeSeriesTimestampColumn string `protobuf:"bytes,35,opt,name=time_series_timestamp_column,json=timeSeriesTimestampColumn,proto3" json:"time_series_timestamp_column,omitempty"`
    // Column to be designated as time series data for ARIMA model.
    TimeSeriesDataColumn string `protobuf:"bytes,36,opt,name=time_series_data_column,json=timeSeriesDataColumn,proto3" json:"time_series_data_column,omitempty"`
    // Whether to enable auto ARIMA or not.
    AutoArima bool `protobuf:"varint,37,opt,name=auto_arima,json=autoArima,proto3" json:"auto_arima,omitempty"`
    // A specification of the non-seasonal part of the ARIMA model: the three
    // components (p, d, q) are the AR order, the degree of differencing, and
    // the MA order.
    NonSeasonalOrder *Model_ArimaOrder `protobuf:"bytes,38,opt,name=non_seasonal_order,json=nonSeasonalOrder,proto3" json:"non_seasonal_order,omitempty"`
    // The data frequency of a time series.
    DataFrequency Model_DataFrequency `protobuf:"varint,39,opt,name=data_frequency,json=dataFrequency,proto3,enum=google.cloud.bigquery.v2.Model_DataFrequency" json:"data_frequency,omitempty"`
    // Include drift when fitting an ARIMA model.
    IncludeDrift bool `protobuf:"varint,41,opt,name=include_drift,json=includeDrift,proto3" json:"include_drift,omitempty"`
    // The geographical region based on which the holidays are considered in
    // time series modeling. If a valid value is specified, then holiday
    // effects modeling is enabled.
    HolidayRegion Model_HolidayRegion `protobuf:"varint,42,opt,name=holiday_region,json=holidayRegion,proto3,enum=google.cloud.bigquery.v2.Model_HolidayRegion" json:"holiday_region,omitempty"`
    // The time series id column that was used during ARIMA model training.
    TimeSeriesIdColumn string `protobuf:"bytes,43,opt,name=time_series_id_column,json=timeSeriesIdColumn,proto3" json:"time_series_id_column,omitempty"`
    // The time series id columns that were used during ARIMA model training.
    TimeSeriesIdColumns []string `protobuf:"bytes,51,rep,name=time_series_id_columns,json=timeSeriesIdColumns,proto3" json:"time_series_id_columns,omitempty"`
    // The number of periods ahead that need to be forecasted.
    Horizon int64 `protobuf:"varint,44,opt,name=horizon,proto3" json:"horizon,omitempty"`
    // Whether to preserve the input structs in output feature names.
    // Suppose there is a struct A with field b.
    // When false (default), the output feature name is A_b.
    // When true, the output feature name is A.b.
    PreserveInputStructs bool `protobuf:"varint,45,opt,name=preserve_input_structs,json=preserveInputStructs,proto3" json:"preserve_input_structs,omitempty"`
    // The max value of non-seasonal p and q.
    AutoArimaMaxOrder int64 `protobuf:"varint,46,opt,name=auto_arima_max_order,json=autoArimaMaxOrder,proto3" json:"auto_arima_max_order,omitempty"`
    // If true, perform decompose time series and save the results.
    DecomposeTimeSeries *wrapperspb.BoolValue `protobuf:"bytes,50,opt,name=decompose_time_series,json=decomposeTimeSeries,proto3" json:"decompose_time_series,omitempty"`
    // If true, clean spikes and dips in the input time series.
    CleanSpikesAndDips *wrapperspb.BoolValue `protobuf:"bytes,52,opt,name=clean_spikes_and_dips,json=cleanSpikesAndDips,proto3" json:"clean_spikes_and_dips,omitempty"`
    // If true, detect step changes and make data adjustment in the input time
    // series.
    AdjustStepChanges *wrapperspb.BoolValue `protobuf:"bytes,53,opt,name=adjust_step_changes,json=adjustStepChanges,proto3" json:"adjust_step_changes,omitempty"`
    // contains filtered or unexported fields
}

func (*Model_TrainingRun_TrainingOptions) Descriptor

func (*Model_TrainingRun_TrainingOptions) Descriptor() ([]byte, []int)

Deprecated: Use Model_TrainingRun_TrainingOptions.ProtoReflect.Descriptor instead.

func (*Model_TrainingRun_TrainingOptions) GetAdjustStepChanges

func (x *Model_TrainingRun_TrainingOptions) GetAdjustStepChanges() *wrapperspb.BoolValue

func (*Model_TrainingRun_TrainingOptions) GetAutoArima

func (x *Model_TrainingRun_TrainingOptions) GetAutoArima() bool

func (*Model_TrainingRun_TrainingOptions) GetAutoArimaMaxOrder

func (x *Model_TrainingRun_TrainingOptions) GetAutoArimaMaxOrder() int64

func (*Model_TrainingRun_TrainingOptions) GetBatchSize

func (x *Model_TrainingRun_TrainingOptions) GetBatchSize() int64

func (*Model_TrainingRun_TrainingOptions) GetCleanSpikesAndDips

func (x *Model_TrainingRun_TrainingOptions) GetCleanSpikesAndDips() *wrapperspb.BoolValue

func (*Model_TrainingRun_TrainingOptions) GetDataFrequency

func (x *Model_TrainingRun_TrainingOptions) GetDataFrequency() Model_DataFrequency

func (*Model_TrainingRun_TrainingOptions) GetDataSplitColumn

func (x *Model_TrainingRun_TrainingOptions) GetDataSplitColumn() string

func (*Model_TrainingRun_TrainingOptions) GetDataSplitEvalFraction

func (x *Model_TrainingRun_TrainingOptions) GetDataSplitEvalFraction() float64

func (*Model_TrainingRun_TrainingOptions) GetDataSplitMethod

func (x *Model_TrainingRun_TrainingOptions) GetDataSplitMethod() Model_DataSplitMethod

func (*Model_TrainingRun_TrainingOptions) GetDecomposeTimeSeries

func (x *Model_TrainingRun_TrainingOptions) GetDecomposeTimeSeries() *wrapperspb.BoolValue

func (*Model_TrainingRun_TrainingOptions) GetDistanceType

func (x *Model_TrainingRun_TrainingOptions) GetDistanceType() Model_DistanceType

func (*Model_TrainingRun_TrainingOptions) GetDropout

func (x *Model_TrainingRun_TrainingOptions) GetDropout() *wrapperspb.DoubleValue

func (*Model_TrainingRun_TrainingOptions) GetEarlyStop

func (x *Model_TrainingRun_TrainingOptions) GetEarlyStop() *wrapperspb.BoolValue

func (*Model_TrainingRun_TrainingOptions) GetFeedbackType

func (x *Model_TrainingRun_TrainingOptions) GetFeedbackType() Model_FeedbackType

func (*Model_TrainingRun_TrainingOptions) GetHiddenUnits

func (x *Model_TrainingRun_TrainingOptions) GetHiddenUnits() []int64

func (*Model_TrainingRun_TrainingOptions) GetHolidayRegion

func (x *Model_TrainingRun_TrainingOptions) GetHolidayRegion() Model_HolidayRegion

func (*Model_TrainingRun_TrainingOptions) GetHorizon

func (x *Model_TrainingRun_TrainingOptions) GetHorizon() int64

func (*Model_TrainingRun_TrainingOptions) GetIncludeDrift

func (x *Model_TrainingRun_TrainingOptions) GetIncludeDrift() bool

func (*Model_TrainingRun_TrainingOptions) GetInitialLearnRate

func (x *Model_TrainingRun_TrainingOptions) GetInitialLearnRate() float64

func (*Model_TrainingRun_TrainingOptions) GetInputLabelColumns

func (x *Model_TrainingRun_TrainingOptions) GetInputLabelColumns() []string

func (*Model_TrainingRun_TrainingOptions) GetItemColumn

func (x *Model_TrainingRun_TrainingOptions) GetItemColumn() string

func (*Model_TrainingRun_TrainingOptions) GetKmeansInitializationColumn

func (x *Model_TrainingRun_TrainingOptions) GetKmeansInitializationColumn() string

func (*Model_TrainingRun_TrainingOptions) GetKmeansInitializationMethod

func (x *Model_TrainingRun_TrainingOptions) GetKmeansInitializationMethod() Model_KmeansEnums_KmeansInitializationMethod

func (*Model_TrainingRun_TrainingOptions) GetL1Regularization

func (x *Model_TrainingRun_TrainingOptions) GetL1Regularization() *wrapperspb.DoubleValue

func (*Model_TrainingRun_TrainingOptions) GetL2Regularization

func (x *Model_TrainingRun_TrainingOptions) GetL2Regularization() *wrapperspb.DoubleValue

func (*Model_TrainingRun_TrainingOptions) GetLabelClassWeights

func (x *Model_TrainingRun_TrainingOptions) GetLabelClassWeights() map[string]float64

func (*Model_TrainingRun_TrainingOptions) GetLearnRate

func (x *Model_TrainingRun_TrainingOptions) GetLearnRate() float64

func (*Model_TrainingRun_TrainingOptions) GetLearnRateStrategy

func (x *Model_TrainingRun_TrainingOptions) GetLearnRateStrategy() Model_LearnRateStrategy

func (*Model_TrainingRun_TrainingOptions) GetLossType

func (x *Model_TrainingRun_TrainingOptions) GetLossType() Model_LossType

func (*Model_TrainingRun_TrainingOptions) GetMaxIterations

func (x *Model_TrainingRun_TrainingOptions) GetMaxIterations() int64

func (*Model_TrainingRun_TrainingOptions) GetMaxTreeDepth

func (x *Model_TrainingRun_TrainingOptions) GetMaxTreeDepth() int64

func (*Model_TrainingRun_TrainingOptions) GetMinRelativeProgress

func (x *Model_TrainingRun_TrainingOptions) GetMinRelativeProgress() *wrapperspb.DoubleValue

func (*Model_TrainingRun_TrainingOptions) GetMinSplitLoss

func (x *Model_TrainingRun_TrainingOptions) GetMinSplitLoss() *wrapperspb.DoubleValue

func (*Model_TrainingRun_TrainingOptions) GetModelUri

func (x *Model_TrainingRun_TrainingOptions) GetModelUri() string

func (*Model_TrainingRun_TrainingOptions) GetNonSeasonalOrder

func (x *Model_TrainingRun_TrainingOptions) GetNonSeasonalOrder() *Model_ArimaOrder

func (*Model_TrainingRun_TrainingOptions) GetNumClusters

func (x *Model_TrainingRun_TrainingOptions) GetNumClusters() int64

func (*Model_TrainingRun_TrainingOptions) GetNumFactors

func (x *Model_TrainingRun_TrainingOptions) GetNumFactors() int64

func (*Model_TrainingRun_TrainingOptions) GetOptimizationStrategy

func (x *Model_TrainingRun_TrainingOptions) GetOptimizationStrategy() Model_OptimizationStrategy

func (*Model_TrainingRun_TrainingOptions) GetPreserveInputStructs

func (x *Model_TrainingRun_TrainingOptions) GetPreserveInputStructs() bool

func (*Model_TrainingRun_TrainingOptions) GetSubsample

func (x *Model_TrainingRun_TrainingOptions) GetSubsample() float64

func (*Model_TrainingRun_TrainingOptions) GetTimeSeriesDataColumn

func (x *Model_TrainingRun_TrainingOptions) GetTimeSeriesDataColumn() string

func (*Model_TrainingRun_TrainingOptions) GetTimeSeriesIdColumn

func (x *Model_TrainingRun_TrainingOptions) GetTimeSeriesIdColumn() string

func (*Model_TrainingRun_TrainingOptions) GetTimeSeriesIdColumns

func (x *Model_TrainingRun_TrainingOptions) GetTimeSeriesIdColumns() []string

func (*Model_TrainingRun_TrainingOptions) GetTimeSeriesTimestampColumn

func (x *Model_TrainingRun_TrainingOptions) GetTimeSeriesTimestampColumn() string

func (*Model_TrainingRun_TrainingOptions) GetUserColumn

func (x *Model_TrainingRun_TrainingOptions) GetUserColumn() string

func (*Model_TrainingRun_TrainingOptions) GetWalsAlpha

func (x *Model_TrainingRun_TrainingOptions) GetWalsAlpha() *wrapperspb.DoubleValue

func (*Model_TrainingRun_TrainingOptions) GetWarmStart

func (x *Model_TrainingRun_TrainingOptions) GetWarmStart() *wrapperspb.BoolValue

func (*Model_TrainingRun_TrainingOptions) ProtoMessage

func (*Model_TrainingRun_TrainingOptions) ProtoMessage()

func (*Model_TrainingRun_TrainingOptions) ProtoReflect

func (x *Model_TrainingRun_TrainingOptions) ProtoReflect() protoreflect.Message

func (*Model_TrainingRun_TrainingOptions) Reset

func (x *Model_TrainingRun_TrainingOptions) Reset()

func (*Model_TrainingRun_TrainingOptions) String

func (x *Model_TrainingRun_TrainingOptions) String() string

type PatchModelRequest

type PatchModelRequest struct {

    // Required. Project ID of the model to patch.
    ProjectId string `protobuf:"bytes,1,opt,name=project_id,json=projectId,proto3" json:"project_id,omitempty"`
    // Required. Dataset ID of the model to patch.
    DatasetId string `protobuf:"bytes,2,opt,name=dataset_id,json=datasetId,proto3" json:"dataset_id,omitempty"`
    // Required. Model ID of the model to patch.
    ModelId string `protobuf:"bytes,3,opt,name=model_id,json=modelId,proto3" json:"model_id,omitempty"`
    // Required. Patched model.
    // Follows RFC5789 patch semantics. Missing fields are not updated.
    // To clear a field, explicitly set to default value.
    Model *Model `protobuf:"bytes,4,opt,name=model,proto3" json:"model,omitempty"`
    // contains filtered or unexported fields
}

func (*PatchModelRequest) Descriptor

func (*PatchModelRequest) Descriptor() ([]byte, []int)

Deprecated: Use PatchModelRequest.ProtoReflect.Descriptor instead.

func (*PatchModelRequest) GetDatasetId

func (x *PatchModelRequest) GetDatasetId() string

func (*PatchModelRequest) GetModel

func (x *PatchModelRequest) GetModel() *Model

func (*PatchModelRequest) GetModelId

func (x *PatchModelRequest) GetModelId() string

func (*PatchModelRequest) GetProjectId

func (x *PatchModelRequest) GetProjectId() string

func (*PatchModelRequest) ProtoMessage

func (*PatchModelRequest) ProtoMessage()

func (*PatchModelRequest) ProtoReflect

func (x *PatchModelRequest) ProtoReflect() protoreflect.Message

func (*PatchModelRequest) Reset

func (x *PatchModelRequest) Reset()

func (*PatchModelRequest) String

func (x *PatchModelRequest) String() string

type StandardSqlDataType

The type of a variable, e.g., a function argument. Examples: INT64: {type_kind="INT64"} ARRAY<STRING>: {type_kind="ARRAY", array_element_type="STRING"} STRUCT<x STRING, y ARRAY<DATE>>:

{type_kind="STRUCT",
 struct_type={fields=[
   {name="x", type={type_kind="STRING"}},
   {name="y", type={type_kind="ARRAY", array_element_type="DATE"}}
 ]}}
type StandardSqlDataType struct {

    // Required. The top level type of this field.
    // Can be any standard SQL data type (e.g., "INT64", "DATE", "ARRAY").
    TypeKind StandardSqlDataType_TypeKind `protobuf:"varint,1,opt,name=type_kind,json=typeKind,proto3,enum=google.cloud.bigquery.v2.StandardSqlDataType_TypeKind" json:"type_kind,omitempty"`
    // Types that are assignable to SubType:
    //	*StandardSqlDataType_ArrayElementType
    //	*StandardSqlDataType_StructType
    SubType isStandardSqlDataType_SubType `protobuf_oneof:"sub_type"`
    // contains filtered or unexported fields
}

func (*StandardSqlDataType) Descriptor

func (*StandardSqlDataType) Descriptor() ([]byte, []int)

Deprecated: Use StandardSqlDataType.ProtoReflect.Descriptor instead.

func (*StandardSqlDataType) GetArrayElementType

func (x *StandardSqlDataType) GetArrayElementType() *StandardSqlDataType

func (*StandardSqlDataType) GetStructType

func (x *StandardSqlDataType) GetStructType() *StandardSqlStructType

func (*StandardSqlDataType) GetSubType

func (m *StandardSqlDataType) GetSubType() isStandardSqlDataType_SubType

func (*StandardSqlDataType) GetTypeKind

func (x *StandardSqlDataType) GetTypeKind() StandardSqlDataType_TypeKind

func (*StandardSqlDataType) ProtoMessage

func (*StandardSqlDataType) ProtoMessage()

func (*StandardSqlDataType) ProtoReflect

func (x *StandardSqlDataType) ProtoReflect() protoreflect.Message

func (*StandardSqlDataType) Reset

func (x *StandardSqlDataType) Reset()

func (*StandardSqlDataType) String

func (x *StandardSqlDataType) String() string

type StandardSqlDataType_ArrayElementType

type StandardSqlDataType_ArrayElementType struct {
    // The type of the array's elements, if type_kind = "ARRAY".
    ArrayElementType *StandardSqlDataType `protobuf:"bytes,2,opt,name=array_element_type,json=arrayElementType,proto3,oneof"`
}

type StandardSqlDataType_StructType

type StandardSqlDataType_StructType struct {
    // The fields of this struct, in order, if type_kind = "STRUCT".
    StructType *StandardSqlStructType `protobuf:"bytes,3,opt,name=struct_type,json=structType,proto3,oneof"`
}

type StandardSqlDataType_TypeKind

type StandardSqlDataType_TypeKind int32
const (
    // Invalid type.
    StandardSqlDataType_TYPE_KIND_UNSPECIFIED StandardSqlDataType_TypeKind = 0
    // Encoded as a string in decimal format.
    StandardSqlDataType_INT64 StandardSqlDataType_TypeKind = 2
    // Encoded as a boolean "false" or "true".
    StandardSqlDataType_BOOL StandardSqlDataType_TypeKind = 5
    // Encoded as a number, or string "NaN", "Infinity" or "-Infinity".
    StandardSqlDataType_FLOAT64 StandardSqlDataType_TypeKind = 7
    // Encoded as a string value.
    StandardSqlDataType_STRING StandardSqlDataType_TypeKind = 8
    // Encoded as a base64 string per RFC 4648, section 4.
    StandardSqlDataType_BYTES StandardSqlDataType_TypeKind = 9
    // Encoded as an RFC 3339 timestamp with mandatory "Z" time zone string:
    // 1985-04-12T23:20:50.52Z
    StandardSqlDataType_TIMESTAMP StandardSqlDataType_TypeKind = 19
    // Encoded as RFC 3339 full-date format string: 1985-04-12
    StandardSqlDataType_DATE StandardSqlDataType_TypeKind = 10
    // Encoded as RFC 3339 partial-time format string: 23:20:50.52
    StandardSqlDataType_TIME StandardSqlDataType_TypeKind = 20
    // Encoded as RFC 3339 full-date "T" partial-time: 1985-04-12T23:20:50.52
    StandardSqlDataType_DATETIME StandardSqlDataType_TypeKind = 21
    // Encoded as fully qualified 3 part: 0-5 15 2:30:45.6
    StandardSqlDataType_INTERVAL StandardSqlDataType_TypeKind = 26
    // Encoded as WKT
    StandardSqlDataType_GEOGRAPHY StandardSqlDataType_TypeKind = 22
    // Encoded as a decimal string.
    StandardSqlDataType_NUMERIC StandardSqlDataType_TypeKind = 23
    // Encoded as a decimal string.
    StandardSqlDataType_BIGNUMERIC StandardSqlDataType_TypeKind = 24
    // Encoded as a string.
    StandardSqlDataType_JSON StandardSqlDataType_TypeKind = 25
    // Encoded as a list with types matching Type.array_type.
    StandardSqlDataType_ARRAY StandardSqlDataType_TypeKind = 16
    // Encoded as a list with fields of type Type.struct_type[i]. List is used
    // because a JSON object cannot have duplicate field names.
    StandardSqlDataType_STRUCT StandardSqlDataType_TypeKind = 17
)

func (StandardSqlDataType_TypeKind) Descriptor

func (StandardSqlDataType_TypeKind) Descriptor() protoreflect.EnumDescriptor

func (StandardSqlDataType_TypeKind) Enum

func (x StandardSqlDataType_TypeKind) Enum() *StandardSqlDataType_TypeKind

func (StandardSqlDataType_TypeKind) EnumDescriptor

func (StandardSqlDataType_TypeKind) EnumDescriptor() ([]byte, []int)

Deprecated: Use StandardSqlDataType_TypeKind.Descriptor instead.

func (StandardSqlDataType_TypeKind) Number

func (x StandardSqlDataType_TypeKind) Number() protoreflect.EnumNumber

func (StandardSqlDataType_TypeKind) String

func (x StandardSqlDataType_TypeKind) String() string

func (StandardSqlDataType_TypeKind) Type

func (StandardSqlDataType_TypeKind) Type() protoreflect.EnumType

type StandardSqlField

A field or a column.

type StandardSqlField struct {

    // Optional. The name of this field. Can be absent for struct fields.
    Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
    // Optional. The type of this parameter. Absent if not explicitly
    // specified (e.g., CREATE FUNCTION statement can omit the return type;
    // in this case the output parameter does not have this "type" field).
    Type *StandardSqlDataType `protobuf:"bytes,2,opt,name=type,proto3" json:"type,omitempty"`
    // contains filtered or unexported fields
}

func (*StandardSqlField) Descriptor

func (*StandardSqlField) Descriptor() ([]byte, []int)

Deprecated: Use StandardSqlField.ProtoReflect.Descriptor instead.

func (*StandardSqlField) GetName

func (x *StandardSqlField) GetName() string

func (*StandardSqlField) GetType

func (x *StandardSqlField) GetType() *StandardSqlDataType

func (*StandardSqlField) ProtoMessage

func (*StandardSqlField) ProtoMessage()

func (*StandardSqlField) ProtoReflect

func (x *StandardSqlField) ProtoReflect() protoreflect.Message

func (*StandardSqlField) Reset

func (x *StandardSqlField) Reset()

func (*StandardSqlField) String

func (x *StandardSqlField) String() string

type StandardSqlStructType

type StandardSqlStructType struct {
    Fields []*StandardSqlField `protobuf:"bytes,1,rep,name=fields,proto3" json:"fields,omitempty"`
    // contains filtered or unexported fields
}

func (*StandardSqlStructType) Descriptor

func (*StandardSqlStructType) Descriptor() ([]byte, []int)

Deprecated: Use StandardSqlStructType.ProtoReflect.Descriptor instead.

func (*StandardSqlStructType) GetFields

func (x *StandardSqlStructType) GetFields() []*StandardSqlField

func (*StandardSqlStructType) ProtoMessage

func (*StandardSqlStructType) ProtoMessage()

func (*StandardSqlStructType) ProtoReflect

func (x *StandardSqlStructType) ProtoReflect() protoreflect.Message

func (*StandardSqlStructType) Reset

func (x *StandardSqlStructType) Reset()

func (*StandardSqlStructType) String

func (x *StandardSqlStructType) String() string

type StandardSqlTableType

A table type

type StandardSqlTableType struct {

    // The columns in this table type
    Columns []*StandardSqlField `protobuf:"bytes,1,rep,name=columns,proto3" json:"columns,omitempty"`
    // contains filtered or unexported fields
}

func (*StandardSqlTableType) Descriptor

func (*StandardSqlTableType) Descriptor() ([]byte, []int)

Deprecated: Use StandardSqlTableType.ProtoReflect.Descriptor instead.

func (*StandardSqlTableType) GetColumns

func (x *StandardSqlTableType) GetColumns() []*StandardSqlField

func (*StandardSqlTableType) ProtoMessage

func (*StandardSqlTableType) ProtoMessage()

func (*StandardSqlTableType) ProtoReflect

func (x *StandardSqlTableType) ProtoReflect() protoreflect.Message

func (*StandardSqlTableType) Reset

func (x *StandardSqlTableType) Reset()

func (*StandardSqlTableType) String

func (x *StandardSqlTableType) String() string

type TableReference

type TableReference struct {

    // Required. The ID of the project containing this table.
    ProjectId string `protobuf:"bytes,1,opt,name=project_id,json=projectId,proto3" json:"project_id,omitempty"`
    // Required. The ID of the dataset containing this table.
    DatasetId string `protobuf:"bytes,2,opt,name=dataset_id,json=datasetId,proto3" json:"dataset_id,omitempty"`
    // Required. The ID of the table. The ID must contain only
    // letters (a-z, A-Z), numbers (0-9), or underscores (_). The maximum
    // length is 1,024 characters.  Certain operations allow
    // suffixing of the table ID with a partition decorator, such as
    // `sample_table$20190123`.
    TableId string `protobuf:"bytes,3,opt,name=table_id,json=tableId,proto3" json:"table_id,omitempty"`
    // The alternative field that will be used when ESF is not able to translate
    // the received data to the project_id field.
    ProjectIdAlternative []string `protobuf:"bytes,4,rep,name=project_id_alternative,json=projectIdAlternative,proto3" json:"project_id_alternative,omitempty"`
    // The alternative field that will be used when ESF is not able to translate
    // the received data to the project_id field.
    DatasetIdAlternative []string `protobuf:"bytes,5,rep,name=dataset_id_alternative,json=datasetIdAlternative,proto3" json:"dataset_id_alternative,omitempty"`
    // The alternative field that will be used when ESF is not able to translate
    // the received data to the project_id field.
    TableIdAlternative []string `protobuf:"bytes,6,rep,name=table_id_alternative,json=tableIdAlternative,proto3" json:"table_id_alternative,omitempty"`
    // contains filtered or unexported fields
}

func (*TableReference) Descriptor

func (*TableReference) Descriptor() ([]byte, []int)

Deprecated: Use TableReference.ProtoReflect.Descriptor instead.

func (*TableReference) GetDatasetId

func (x *TableReference) GetDatasetId() string

func (*TableReference) GetDatasetIdAlternative

func (x *TableReference) GetDatasetIdAlternative() []string

func (*TableReference) GetProjectId

func (x *TableReference) GetProjectId() string

func (*TableReference) GetProjectIdAlternative

func (x *TableReference) GetProjectIdAlternative() []string

func (*TableReference) GetTableId

func (x *TableReference) GetTableId() string

func (*TableReference) GetTableIdAlternative

func (x *TableReference) GetTableIdAlternative() []string

func (*TableReference) ProtoMessage

func (*TableReference) ProtoMessage()

func (*TableReference) ProtoReflect

func (x *TableReference) ProtoReflect() protoreflect.Message

func (*TableReference) Reset

func (x *TableReference) Reset()

func (*TableReference) String

func (x *TableReference) String() string

type UnimplementedModelServiceServer

UnimplementedModelServiceServer can be embedded to have forward compatible implementations.

type UnimplementedModelServiceServer struct {
}

func (*UnimplementedModelServiceServer) DeleteModel

func (*UnimplementedModelServiceServer) DeleteModel(context.Context, *DeleteModelRequest) (*emptypb.Empty, error)

func (*UnimplementedModelServiceServer) GetModel

func (*UnimplementedModelServiceServer) GetModel(context.Context, *GetModelRequest) (*Model, error)

func (*UnimplementedModelServiceServer) ListModels

func (*UnimplementedModelServiceServer) ListModels(context.Context, *ListModelsRequest) (*ListModelsResponse, error)

func (*UnimplementedModelServiceServer) PatchModel

func (*UnimplementedModelServiceServer) PatchModel(context.Context, *PatchModelRequest) (*Model, error)