...

Package definition

import "google.golang.org/genproto/googleapis/cloud/aiplatform/v1/schema/trainingjob/definition"
Overview
Index

Overview ▾

Index ▾

Variables
type AutoMlForecasting
    func (*AutoMlForecasting) Descriptor() ([]byte, []int)
    func (x *AutoMlForecasting) GetInputs() *AutoMlForecastingInputs
    func (x *AutoMlForecasting) GetMetadata() *AutoMlForecastingMetadata
    func (*AutoMlForecasting) ProtoMessage()
    func (x *AutoMlForecasting) ProtoReflect() protoreflect.Message
    func (x *AutoMlForecasting) Reset()
    func (x *AutoMlForecasting) String() string
type AutoMlForecastingInputs
    func (*AutoMlForecastingInputs) Descriptor() ([]byte, []int)
    func (x *AutoMlForecastingInputs) GetExportEvaluatedDataItemsConfig() *ExportEvaluatedDataItemsConfig
    func (x *AutoMlForecastingInputs) GetForecastWindowEnd() int64
    func (x *AutoMlForecastingInputs) GetForecastWindowStart() int64
    func (x *AutoMlForecastingInputs) GetOptimizationObjective() string
    func (x *AutoMlForecastingInputs) GetPastHorizon() int64
    func (x *AutoMlForecastingInputs) GetPeriod() *AutoMlForecastingInputs_Period
    func (x *AutoMlForecastingInputs) GetQuantiles() []float64
    func (x *AutoMlForecastingInputs) GetStaticColumns() []string
    func (x *AutoMlForecastingInputs) GetTargetColumn() string
    func (x *AutoMlForecastingInputs) GetTimeColumn() string
    func (x *AutoMlForecastingInputs) GetTimeSeriesIdentifierColumn() string
    func (x *AutoMlForecastingInputs) GetTimeVariantPastAndFutureColumns() []string
    func (x *AutoMlForecastingInputs) GetTimeVariantPastOnlyColumns() []string
    func (x *AutoMlForecastingInputs) GetTrainBudgetMilliNodeHours() int64
    func (x *AutoMlForecastingInputs) GetTransformations() []*AutoMlForecastingInputs_Transformation
    func (x *AutoMlForecastingInputs) GetValidationOptions() string
    func (x *AutoMlForecastingInputs) GetWeightColumn() string
    func (*AutoMlForecastingInputs) ProtoMessage()
    func (x *AutoMlForecastingInputs) ProtoReflect() protoreflect.Message
    func (x *AutoMlForecastingInputs) Reset()
    func (x *AutoMlForecastingInputs) String() string
type AutoMlForecastingInputs_Period
    func (*AutoMlForecastingInputs_Period) Descriptor() ([]byte, []int)
    func (x *AutoMlForecastingInputs_Period) GetQuantity() int64
    func (x *AutoMlForecastingInputs_Period) GetUnit() string
    func (*AutoMlForecastingInputs_Period) ProtoMessage()
    func (x *AutoMlForecastingInputs_Period) ProtoReflect() protoreflect.Message
    func (x *AutoMlForecastingInputs_Period) Reset()
    func (x *AutoMlForecastingInputs_Period) String() string
type AutoMlForecastingInputs_Transformation
    func (*AutoMlForecastingInputs_Transformation) Descriptor() ([]byte, []int)
    func (x *AutoMlForecastingInputs_Transformation) GetAuto() *AutoMlForecastingInputs_Transformation_AutoTransformation
    func (x *AutoMlForecastingInputs_Transformation) GetCategorical() *AutoMlForecastingInputs_Transformation_CategoricalTransformation
    func (x *AutoMlForecastingInputs_Transformation) GetNumeric() *AutoMlForecastingInputs_Transformation_NumericTransformation
    func (x *AutoMlForecastingInputs_Transformation) GetRepeatedCategorical() *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation
    func (x *AutoMlForecastingInputs_Transformation) GetRepeatedNumeric() *AutoMlForecastingInputs_Transformation_NumericArrayTransformation
    func (x *AutoMlForecastingInputs_Transformation) GetRepeatedText() *AutoMlForecastingInputs_Transformation_TextArrayTransformation
    func (x *AutoMlForecastingInputs_Transformation) GetText() *AutoMlForecastingInputs_Transformation_TextTransformation
    func (x *AutoMlForecastingInputs_Transformation) GetTimestamp() *AutoMlForecastingInputs_Transformation_TimestampTransformation
    func (m *AutoMlForecastingInputs_Transformation) GetTransformationDetail() isAutoMlForecastingInputs_Transformation_TransformationDetail
    func (*AutoMlForecastingInputs_Transformation) ProtoMessage()
    func (x *AutoMlForecastingInputs_Transformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlForecastingInputs_Transformation) Reset()
    func (x *AutoMlForecastingInputs_Transformation) String() string
type AutoMlForecastingInputs_Transformation_Auto
type AutoMlForecastingInputs_Transformation_AutoTransformation
    func (*AutoMlForecastingInputs_Transformation_AutoTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) GetColumnName() string
    func (*AutoMlForecastingInputs_Transformation_AutoTransformation) ProtoMessage()
    func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) Reset()
    func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) String() string
type AutoMlForecastingInputs_Transformation_Categorical
type AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation
    func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) GetColumnName() string
    func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) ProtoMessage()
    func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) Reset()
    func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) String() string
type AutoMlForecastingInputs_Transformation_CategoricalTransformation
    func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) GetColumnName() string
    func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) ProtoMessage()
    func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) Reset()
    func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) String() string
type AutoMlForecastingInputs_Transformation_Numeric
type AutoMlForecastingInputs_Transformation_NumericArrayTransformation
    func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) GetColumnName() string
    func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) GetInvalidValuesAllowed() bool
    func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) ProtoMessage()
    func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) Reset()
    func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) String() string
type AutoMlForecastingInputs_Transformation_NumericTransformation
    func (*AutoMlForecastingInputs_Transformation_NumericTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) GetColumnName() string
    func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) GetInvalidValuesAllowed() bool
    func (*AutoMlForecastingInputs_Transformation_NumericTransformation) ProtoMessage()
    func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) Reset()
    func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) String() string
type AutoMlForecastingInputs_Transformation_RepeatedCategorical
type AutoMlForecastingInputs_Transformation_RepeatedNumeric
type AutoMlForecastingInputs_Transformation_RepeatedText
type AutoMlForecastingInputs_Transformation_Text
type AutoMlForecastingInputs_Transformation_TextArrayTransformation
    func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) GetColumnName() string
    func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) ProtoMessage()
    func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) Reset()
    func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) String() string
type AutoMlForecastingInputs_Transformation_TextTransformation
    func (*AutoMlForecastingInputs_Transformation_TextTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlForecastingInputs_Transformation_TextTransformation) GetColumnName() string
    func (*AutoMlForecastingInputs_Transformation_TextTransformation) ProtoMessage()
    func (x *AutoMlForecastingInputs_Transformation_TextTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlForecastingInputs_Transformation_TextTransformation) Reset()
    func (x *AutoMlForecastingInputs_Transformation_TextTransformation) String() string
type AutoMlForecastingInputs_Transformation_Timestamp
type AutoMlForecastingInputs_Transformation_TimestampTransformation
    func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) GetColumnName() string
    func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) GetInvalidValuesAllowed() bool
    func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) GetTimeFormat() string
    func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) ProtoMessage()
    func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) Reset()
    func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) String() string
type AutoMlForecastingMetadata
    func (*AutoMlForecastingMetadata) Descriptor() ([]byte, []int)
    func (x *AutoMlForecastingMetadata) GetTrainCostMilliNodeHours() int64
    func (*AutoMlForecastingMetadata) ProtoMessage()
    func (x *AutoMlForecastingMetadata) ProtoReflect() protoreflect.Message
    func (x *AutoMlForecastingMetadata) Reset()
    func (x *AutoMlForecastingMetadata) String() string
type AutoMlImageClassification
    func (*AutoMlImageClassification) Descriptor() ([]byte, []int)
    func (x *AutoMlImageClassification) GetInputs() *AutoMlImageClassificationInputs
    func (x *AutoMlImageClassification) GetMetadata() *AutoMlImageClassificationMetadata
    func (*AutoMlImageClassification) ProtoMessage()
    func (x *AutoMlImageClassification) ProtoReflect() protoreflect.Message
    func (x *AutoMlImageClassification) Reset()
    func (x *AutoMlImageClassification) String() string
type AutoMlImageClassificationInputs
    func (*AutoMlImageClassificationInputs) Descriptor() ([]byte, []int)
    func (x *AutoMlImageClassificationInputs) GetBaseModelId() string
    func (x *AutoMlImageClassificationInputs) GetBudgetMilliNodeHours() int64
    func (x *AutoMlImageClassificationInputs) GetDisableEarlyStopping() bool
    func (x *AutoMlImageClassificationInputs) GetModelType() AutoMlImageClassificationInputs_ModelType
    func (x *AutoMlImageClassificationInputs) GetMultiLabel() bool
    func (*AutoMlImageClassificationInputs) ProtoMessage()
    func (x *AutoMlImageClassificationInputs) ProtoReflect() protoreflect.Message
    func (x *AutoMlImageClassificationInputs) Reset()
    func (x *AutoMlImageClassificationInputs) String() string
type AutoMlImageClassificationInputs_ModelType
    func (AutoMlImageClassificationInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
    func (x AutoMlImageClassificationInputs_ModelType) Enum() *AutoMlImageClassificationInputs_ModelType
    func (AutoMlImageClassificationInputs_ModelType) EnumDescriptor() ([]byte, []int)
    func (x AutoMlImageClassificationInputs_ModelType) Number() protoreflect.EnumNumber
    func (x AutoMlImageClassificationInputs_ModelType) String() string
    func (AutoMlImageClassificationInputs_ModelType) Type() protoreflect.EnumType
type AutoMlImageClassificationMetadata
    func (*AutoMlImageClassificationMetadata) Descriptor() ([]byte, []int)
    func (x *AutoMlImageClassificationMetadata) GetCostMilliNodeHours() int64
    func (x *AutoMlImageClassificationMetadata) GetSuccessfulStopReason() AutoMlImageClassificationMetadata_SuccessfulStopReason
    func (*AutoMlImageClassificationMetadata) ProtoMessage()
    func (x *AutoMlImageClassificationMetadata) ProtoReflect() protoreflect.Message
    func (x *AutoMlImageClassificationMetadata) Reset()
    func (x *AutoMlImageClassificationMetadata) String() string
type AutoMlImageClassificationMetadata_SuccessfulStopReason
    func (AutoMlImageClassificationMetadata_SuccessfulStopReason) Descriptor() protoreflect.EnumDescriptor
    func (x AutoMlImageClassificationMetadata_SuccessfulStopReason) Enum() *AutoMlImageClassificationMetadata_SuccessfulStopReason
    func (AutoMlImageClassificationMetadata_SuccessfulStopReason) EnumDescriptor() ([]byte, []int)
    func (x AutoMlImageClassificationMetadata_SuccessfulStopReason) Number() protoreflect.EnumNumber
    func (x AutoMlImageClassificationMetadata_SuccessfulStopReason) String() string
    func (AutoMlImageClassificationMetadata_SuccessfulStopReason) Type() protoreflect.EnumType
type AutoMlImageObjectDetection
    func (*AutoMlImageObjectDetection) Descriptor() ([]byte, []int)
    func (x *AutoMlImageObjectDetection) GetInputs() *AutoMlImageObjectDetectionInputs
    func (x *AutoMlImageObjectDetection) GetMetadata() *AutoMlImageObjectDetectionMetadata
    func (*AutoMlImageObjectDetection) ProtoMessage()
    func (x *AutoMlImageObjectDetection) ProtoReflect() protoreflect.Message
    func (x *AutoMlImageObjectDetection) Reset()
    func (x *AutoMlImageObjectDetection) String() string
type AutoMlImageObjectDetectionInputs
    func (*AutoMlImageObjectDetectionInputs) Descriptor() ([]byte, []int)
    func (x *AutoMlImageObjectDetectionInputs) GetBudgetMilliNodeHours() int64
    func (x *AutoMlImageObjectDetectionInputs) GetDisableEarlyStopping() bool
    func (x *AutoMlImageObjectDetectionInputs) GetModelType() AutoMlImageObjectDetectionInputs_ModelType
    func (*AutoMlImageObjectDetectionInputs) ProtoMessage()
    func (x *AutoMlImageObjectDetectionInputs) ProtoReflect() protoreflect.Message
    func (x *AutoMlImageObjectDetectionInputs) Reset()
    func (x *AutoMlImageObjectDetectionInputs) String() string
type AutoMlImageObjectDetectionInputs_ModelType
    func (AutoMlImageObjectDetectionInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
    func (x AutoMlImageObjectDetectionInputs_ModelType) Enum() *AutoMlImageObjectDetectionInputs_ModelType
    func (AutoMlImageObjectDetectionInputs_ModelType) EnumDescriptor() ([]byte, []int)
    func (x AutoMlImageObjectDetectionInputs_ModelType) Number() protoreflect.EnumNumber
    func (x AutoMlImageObjectDetectionInputs_ModelType) String() string
    func (AutoMlImageObjectDetectionInputs_ModelType) Type() protoreflect.EnumType
type AutoMlImageObjectDetectionMetadata
    func (*AutoMlImageObjectDetectionMetadata) Descriptor() ([]byte, []int)
    func (x *AutoMlImageObjectDetectionMetadata) GetCostMilliNodeHours() int64
    func (x *AutoMlImageObjectDetectionMetadata) GetSuccessfulStopReason() AutoMlImageObjectDetectionMetadata_SuccessfulStopReason
    func (*AutoMlImageObjectDetectionMetadata) ProtoMessage()
    func (x *AutoMlImageObjectDetectionMetadata) ProtoReflect() protoreflect.Message
    func (x *AutoMlImageObjectDetectionMetadata) Reset()
    func (x *AutoMlImageObjectDetectionMetadata) String() string
type AutoMlImageObjectDetectionMetadata_SuccessfulStopReason
    func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Descriptor() protoreflect.EnumDescriptor
    func (x AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Enum() *AutoMlImageObjectDetectionMetadata_SuccessfulStopReason
    func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) EnumDescriptor() ([]byte, []int)
    func (x AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Number() protoreflect.EnumNumber
    func (x AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) String() string
    func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Type() protoreflect.EnumType
type AutoMlImageSegmentation
    func (*AutoMlImageSegmentation) Descriptor() ([]byte, []int)
    func (x *AutoMlImageSegmentation) GetInputs() *AutoMlImageSegmentationInputs
    func (x *AutoMlImageSegmentation) GetMetadata() *AutoMlImageSegmentationMetadata
    func (*AutoMlImageSegmentation) ProtoMessage()
    func (x *AutoMlImageSegmentation) ProtoReflect() protoreflect.Message
    func (x *AutoMlImageSegmentation) Reset()
    func (x *AutoMlImageSegmentation) String() string
type AutoMlImageSegmentationInputs
    func (*AutoMlImageSegmentationInputs) Descriptor() ([]byte, []int)
    func (x *AutoMlImageSegmentationInputs) GetBaseModelId() string
    func (x *AutoMlImageSegmentationInputs) GetBudgetMilliNodeHours() int64
    func (x *AutoMlImageSegmentationInputs) GetModelType() AutoMlImageSegmentationInputs_ModelType
    func (*AutoMlImageSegmentationInputs) ProtoMessage()
    func (x *AutoMlImageSegmentationInputs) ProtoReflect() protoreflect.Message
    func (x *AutoMlImageSegmentationInputs) Reset()
    func (x *AutoMlImageSegmentationInputs) String() string
type AutoMlImageSegmentationInputs_ModelType
    func (AutoMlImageSegmentationInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
    func (x AutoMlImageSegmentationInputs_ModelType) Enum() *AutoMlImageSegmentationInputs_ModelType
    func (AutoMlImageSegmentationInputs_ModelType) EnumDescriptor() ([]byte, []int)
    func (x AutoMlImageSegmentationInputs_ModelType) Number() protoreflect.EnumNumber
    func (x AutoMlImageSegmentationInputs_ModelType) String() string
    func (AutoMlImageSegmentationInputs_ModelType) Type() protoreflect.EnumType
type AutoMlImageSegmentationMetadata
    func (*AutoMlImageSegmentationMetadata) Descriptor() ([]byte, []int)
    func (x *AutoMlImageSegmentationMetadata) GetCostMilliNodeHours() int64
    func (x *AutoMlImageSegmentationMetadata) GetSuccessfulStopReason() AutoMlImageSegmentationMetadata_SuccessfulStopReason
    func (*AutoMlImageSegmentationMetadata) ProtoMessage()
    func (x *AutoMlImageSegmentationMetadata) ProtoReflect() protoreflect.Message
    func (x *AutoMlImageSegmentationMetadata) Reset()
    func (x *AutoMlImageSegmentationMetadata) String() string
type AutoMlImageSegmentationMetadata_SuccessfulStopReason
    func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) Descriptor() protoreflect.EnumDescriptor
    func (x AutoMlImageSegmentationMetadata_SuccessfulStopReason) Enum() *AutoMlImageSegmentationMetadata_SuccessfulStopReason
    func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) EnumDescriptor() ([]byte, []int)
    func (x AutoMlImageSegmentationMetadata_SuccessfulStopReason) Number() protoreflect.EnumNumber
    func (x AutoMlImageSegmentationMetadata_SuccessfulStopReason) String() string
    func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) Type() protoreflect.EnumType
type AutoMlTables
    func (*AutoMlTables) Descriptor() ([]byte, []int)
    func (x *AutoMlTables) GetInputs() *AutoMlTablesInputs
    func (x *AutoMlTables) GetMetadata() *AutoMlTablesMetadata
    func (*AutoMlTables) ProtoMessage()
    func (x *AutoMlTables) ProtoReflect() protoreflect.Message
    func (x *AutoMlTables) Reset()
    func (x *AutoMlTables) String() string
type AutoMlTablesInputs
    func (*AutoMlTablesInputs) Descriptor() ([]byte, []int)
    func (x *AutoMlTablesInputs) GetAdditionalExperiments() []string
    func (m *AutoMlTablesInputs) GetAdditionalOptimizationObjectiveConfig() isAutoMlTablesInputs_AdditionalOptimizationObjectiveConfig
    func (x *AutoMlTablesInputs) GetDisableEarlyStopping() bool
    func (x *AutoMlTablesInputs) GetExportEvaluatedDataItemsConfig() *ExportEvaluatedDataItemsConfig
    func (x *AutoMlTablesInputs) GetOptimizationObjective() string
    func (x *AutoMlTablesInputs) GetOptimizationObjectivePrecisionValue() float32
    func (x *AutoMlTablesInputs) GetOptimizationObjectiveRecallValue() float32
    func (x *AutoMlTablesInputs) GetPredictionType() string
    func (x *AutoMlTablesInputs) GetTargetColumn() string
    func (x *AutoMlTablesInputs) GetTrainBudgetMilliNodeHours() int64
    func (x *AutoMlTablesInputs) GetTransformations() []*AutoMlTablesInputs_Transformation
    func (x *AutoMlTablesInputs) GetWeightColumnName() string
    func (*AutoMlTablesInputs) ProtoMessage()
    func (x *AutoMlTablesInputs) ProtoReflect() protoreflect.Message
    func (x *AutoMlTablesInputs) Reset()
    func (x *AutoMlTablesInputs) String() string
type AutoMlTablesInputs_OptimizationObjectivePrecisionValue
type AutoMlTablesInputs_OptimizationObjectiveRecallValue
type AutoMlTablesInputs_Transformation
    func (*AutoMlTablesInputs_Transformation) Descriptor() ([]byte, []int)
    func (x *AutoMlTablesInputs_Transformation) GetAuto() *AutoMlTablesInputs_Transformation_AutoTransformation
    func (x *AutoMlTablesInputs_Transformation) GetCategorical() *AutoMlTablesInputs_Transformation_CategoricalTransformation
    func (x *AutoMlTablesInputs_Transformation) GetNumeric() *AutoMlTablesInputs_Transformation_NumericTransformation
    func (x *AutoMlTablesInputs_Transformation) GetRepeatedCategorical() *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation
    func (x *AutoMlTablesInputs_Transformation) GetRepeatedNumeric() *AutoMlTablesInputs_Transformation_NumericArrayTransformation
    func (x *AutoMlTablesInputs_Transformation) GetRepeatedText() *AutoMlTablesInputs_Transformation_TextArrayTransformation
    func (x *AutoMlTablesInputs_Transformation) GetText() *AutoMlTablesInputs_Transformation_TextTransformation
    func (x *AutoMlTablesInputs_Transformation) GetTimestamp() *AutoMlTablesInputs_Transformation_TimestampTransformation
    func (m *AutoMlTablesInputs_Transformation) GetTransformationDetail() isAutoMlTablesInputs_Transformation_TransformationDetail
    func (*AutoMlTablesInputs_Transformation) ProtoMessage()
    func (x *AutoMlTablesInputs_Transformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlTablesInputs_Transformation) Reset()
    func (x *AutoMlTablesInputs_Transformation) String() string
type AutoMlTablesInputs_Transformation_Auto
type AutoMlTablesInputs_Transformation_AutoTransformation
    func (*AutoMlTablesInputs_Transformation_AutoTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlTablesInputs_Transformation_AutoTransformation) GetColumnName() string
    func (*AutoMlTablesInputs_Transformation_AutoTransformation) ProtoMessage()
    func (x *AutoMlTablesInputs_Transformation_AutoTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlTablesInputs_Transformation_AutoTransformation) Reset()
    func (x *AutoMlTablesInputs_Transformation_AutoTransformation) String() string
type AutoMlTablesInputs_Transformation_Categorical
type AutoMlTablesInputs_Transformation_CategoricalArrayTransformation
    func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) GetColumnName() string
    func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) ProtoMessage()
    func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) Reset()
    func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) String() string
type AutoMlTablesInputs_Transformation_CategoricalTransformation
    func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) GetColumnName() string
    func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) ProtoMessage()
    func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) Reset()
    func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) String() string
type AutoMlTablesInputs_Transformation_Numeric
type AutoMlTablesInputs_Transformation_NumericArrayTransformation
    func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) GetColumnName() string
    func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) GetInvalidValuesAllowed() bool
    func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) ProtoMessage()
    func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) Reset()
    func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) String() string
type AutoMlTablesInputs_Transformation_NumericTransformation
    func (*AutoMlTablesInputs_Transformation_NumericTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlTablesInputs_Transformation_NumericTransformation) GetColumnName() string
    func (x *AutoMlTablesInputs_Transformation_NumericTransformation) GetInvalidValuesAllowed() bool
    func (*AutoMlTablesInputs_Transformation_NumericTransformation) ProtoMessage()
    func (x *AutoMlTablesInputs_Transformation_NumericTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlTablesInputs_Transformation_NumericTransformation) Reset()
    func (x *AutoMlTablesInputs_Transformation_NumericTransformation) String() string
type AutoMlTablesInputs_Transformation_RepeatedCategorical
type AutoMlTablesInputs_Transformation_RepeatedNumeric
type AutoMlTablesInputs_Transformation_RepeatedText
type AutoMlTablesInputs_Transformation_Text
type AutoMlTablesInputs_Transformation_TextArrayTransformation
    func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) GetColumnName() string
    func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) ProtoMessage()
    func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) Reset()
    func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) String() string
type AutoMlTablesInputs_Transformation_TextTransformation
    func (*AutoMlTablesInputs_Transformation_TextTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlTablesInputs_Transformation_TextTransformation) GetColumnName() string
    func (*AutoMlTablesInputs_Transformation_TextTransformation) ProtoMessage()
    func (x *AutoMlTablesInputs_Transformation_TextTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlTablesInputs_Transformation_TextTransformation) Reset()
    func (x *AutoMlTablesInputs_Transformation_TextTransformation) String() string
type AutoMlTablesInputs_Transformation_Timestamp
type AutoMlTablesInputs_Transformation_TimestampTransformation
    func (*AutoMlTablesInputs_Transformation_TimestampTransformation) Descriptor() ([]byte, []int)
    func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) GetColumnName() string
    func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) GetInvalidValuesAllowed() bool
    func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) GetTimeFormat() string
    func (*AutoMlTablesInputs_Transformation_TimestampTransformation) ProtoMessage()
    func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) ProtoReflect() protoreflect.Message
    func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) Reset()
    func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) String() string
type AutoMlTablesMetadata
    func (*AutoMlTablesMetadata) Descriptor() ([]byte, []int)
    func (x *AutoMlTablesMetadata) GetTrainCostMilliNodeHours() int64
    func (*AutoMlTablesMetadata) ProtoMessage()
    func (x *AutoMlTablesMetadata) ProtoReflect() protoreflect.Message
    func (x *AutoMlTablesMetadata) Reset()
    func (x *AutoMlTablesMetadata) String() string
type AutoMlTextClassification
    func (*AutoMlTextClassification) Descriptor() ([]byte, []int)
    func (x *AutoMlTextClassification) GetInputs() *AutoMlTextClassificationInputs
    func (*AutoMlTextClassification) ProtoMessage()
    func (x *AutoMlTextClassification) ProtoReflect() protoreflect.Message
    func (x *AutoMlTextClassification) Reset()
    func (x *AutoMlTextClassification) String() string
type AutoMlTextClassificationInputs
    func (*AutoMlTextClassificationInputs) Descriptor() ([]byte, []int)
    func (x *AutoMlTextClassificationInputs) GetMultiLabel() bool
    func (*AutoMlTextClassificationInputs) ProtoMessage()
    func (x *AutoMlTextClassificationInputs) ProtoReflect() protoreflect.Message
    func (x *AutoMlTextClassificationInputs) Reset()
    func (x *AutoMlTextClassificationInputs) String() string
type AutoMlTextExtraction
    func (*AutoMlTextExtraction) Descriptor() ([]byte, []int)
    func (x *AutoMlTextExtraction) GetInputs() *AutoMlTextExtractionInputs
    func (*AutoMlTextExtraction) ProtoMessage()
    func (x *AutoMlTextExtraction) ProtoReflect() protoreflect.Message
    func (x *AutoMlTextExtraction) Reset()
    func (x *AutoMlTextExtraction) String() string
type AutoMlTextExtractionInputs
    func (*AutoMlTextExtractionInputs) Descriptor() ([]byte, []int)
    func (*AutoMlTextExtractionInputs) ProtoMessage()
    func (x *AutoMlTextExtractionInputs) ProtoReflect() protoreflect.Message
    func (x *AutoMlTextExtractionInputs) Reset()
    func (x *AutoMlTextExtractionInputs) String() string
type AutoMlTextSentiment
    func (*AutoMlTextSentiment) Descriptor() ([]byte, []int)
    func (x *AutoMlTextSentiment) GetInputs() *AutoMlTextSentimentInputs
    func (*AutoMlTextSentiment) ProtoMessage()
    func (x *AutoMlTextSentiment) ProtoReflect() protoreflect.Message
    func (x *AutoMlTextSentiment) Reset()
    func (x *AutoMlTextSentiment) String() string
type AutoMlTextSentimentInputs
    func (*AutoMlTextSentimentInputs) Descriptor() ([]byte, []int)
    func (x *AutoMlTextSentimentInputs) GetSentimentMax() int32
    func (*AutoMlTextSentimentInputs) ProtoMessage()
    func (x *AutoMlTextSentimentInputs) ProtoReflect() protoreflect.Message
    func (x *AutoMlTextSentimentInputs) Reset()
    func (x *AutoMlTextSentimentInputs) String() string
type AutoMlVideoActionRecognition
    func (*AutoMlVideoActionRecognition) Descriptor() ([]byte, []int)
    func (x *AutoMlVideoActionRecognition) GetInputs() *AutoMlVideoActionRecognitionInputs
    func (*AutoMlVideoActionRecognition) ProtoMessage()
    func (x *AutoMlVideoActionRecognition) ProtoReflect() protoreflect.Message
    func (x *AutoMlVideoActionRecognition) Reset()
    func (x *AutoMlVideoActionRecognition) String() string
type AutoMlVideoActionRecognitionInputs
    func (*AutoMlVideoActionRecognitionInputs) Descriptor() ([]byte, []int)
    func (x *AutoMlVideoActionRecognitionInputs) GetModelType() AutoMlVideoActionRecognitionInputs_ModelType
    func (*AutoMlVideoActionRecognitionInputs) ProtoMessage()
    func (x *AutoMlVideoActionRecognitionInputs) ProtoReflect() protoreflect.Message
    func (x *AutoMlVideoActionRecognitionInputs) Reset()
    func (x *AutoMlVideoActionRecognitionInputs) String() string
type AutoMlVideoActionRecognitionInputs_ModelType
    func (AutoMlVideoActionRecognitionInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
    func (x AutoMlVideoActionRecognitionInputs_ModelType) Enum() *AutoMlVideoActionRecognitionInputs_ModelType
    func (AutoMlVideoActionRecognitionInputs_ModelType) EnumDescriptor() ([]byte, []int)
    func (x AutoMlVideoActionRecognitionInputs_ModelType) Number() protoreflect.EnumNumber
    func (x AutoMlVideoActionRecognitionInputs_ModelType) String() string
    func (AutoMlVideoActionRecognitionInputs_ModelType) Type() protoreflect.EnumType
type AutoMlVideoClassification
    func (*AutoMlVideoClassification) Descriptor() ([]byte, []int)
    func (x *AutoMlVideoClassification) GetInputs() *AutoMlVideoClassificationInputs
    func (*AutoMlVideoClassification) ProtoMessage()
    func (x *AutoMlVideoClassification) ProtoReflect() protoreflect.Message
    func (x *AutoMlVideoClassification) Reset()
    func (x *AutoMlVideoClassification) String() string
type AutoMlVideoClassificationInputs
    func (*AutoMlVideoClassificationInputs) Descriptor() ([]byte, []int)
    func (x *AutoMlVideoClassificationInputs) GetModelType() AutoMlVideoClassificationInputs_ModelType
    func (*AutoMlVideoClassificationInputs) ProtoMessage()
    func (x *AutoMlVideoClassificationInputs) ProtoReflect() protoreflect.Message
    func (x *AutoMlVideoClassificationInputs) Reset()
    func (x *AutoMlVideoClassificationInputs) String() string
type AutoMlVideoClassificationInputs_ModelType
    func (AutoMlVideoClassificationInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
    func (x AutoMlVideoClassificationInputs_ModelType) Enum() *AutoMlVideoClassificationInputs_ModelType
    func (AutoMlVideoClassificationInputs_ModelType) EnumDescriptor() ([]byte, []int)
    func (x AutoMlVideoClassificationInputs_ModelType) Number() protoreflect.EnumNumber
    func (x AutoMlVideoClassificationInputs_ModelType) String() string
    func (AutoMlVideoClassificationInputs_ModelType) Type() protoreflect.EnumType
type AutoMlVideoObjectTracking
    func (*AutoMlVideoObjectTracking) Descriptor() ([]byte, []int)
    func (x *AutoMlVideoObjectTracking) GetInputs() *AutoMlVideoObjectTrackingInputs
    func (*AutoMlVideoObjectTracking) ProtoMessage()
    func (x *AutoMlVideoObjectTracking) ProtoReflect() protoreflect.Message
    func (x *AutoMlVideoObjectTracking) Reset()
    func (x *AutoMlVideoObjectTracking) String() string
type AutoMlVideoObjectTrackingInputs
    func (*AutoMlVideoObjectTrackingInputs) Descriptor() ([]byte, []int)
    func (x *AutoMlVideoObjectTrackingInputs) GetModelType() AutoMlVideoObjectTrackingInputs_ModelType
    func (*AutoMlVideoObjectTrackingInputs) ProtoMessage()
    func (x *AutoMlVideoObjectTrackingInputs) ProtoReflect() protoreflect.Message
    func (x *AutoMlVideoObjectTrackingInputs) Reset()
    func (x *AutoMlVideoObjectTrackingInputs) String() string
type AutoMlVideoObjectTrackingInputs_ModelType
    func (AutoMlVideoObjectTrackingInputs_ModelType) Descriptor() protoreflect.EnumDescriptor
    func (x AutoMlVideoObjectTrackingInputs_ModelType) Enum() *AutoMlVideoObjectTrackingInputs_ModelType
    func (AutoMlVideoObjectTrackingInputs_ModelType) EnumDescriptor() ([]byte, []int)
    func (x AutoMlVideoObjectTrackingInputs_ModelType) Number() protoreflect.EnumNumber
    func (x AutoMlVideoObjectTrackingInputs_ModelType) String() string
    func (AutoMlVideoObjectTrackingInputs_ModelType) Type() protoreflect.EnumType
type ExportEvaluatedDataItemsConfig
    func (*ExportEvaluatedDataItemsConfig) Descriptor() ([]byte, []int)
    func (x *ExportEvaluatedDataItemsConfig) GetDestinationBigqueryUri() string
    func (x *ExportEvaluatedDataItemsConfig) GetOverrideExistingTable() bool
    func (*ExportEvaluatedDataItemsConfig) ProtoMessage()
    func (x *ExportEvaluatedDataItemsConfig) ProtoReflect() protoreflect.Message
    func (x *ExportEvaluatedDataItemsConfig) Reset()
    func (x *ExportEvaluatedDataItemsConfig) String() string

Package files

automl_image_classification.pb.go automl_image_object_detection.pb.go automl_image_segmentation.pb.go automl_tables.pb.go automl_text_classification.pb.go automl_text_extraction.pb.go automl_text_sentiment.pb.go automl_time_series_forecasting.pb.go automl_video_action_recognition.pb.go automl_video_classification.pb.go automl_video_object_tracking.pb.go export_evaluated_data_items_config.pb.go

Variables

Enum value maps for AutoMlImageClassificationInputs_ModelType.

var (
    AutoMlImageClassificationInputs_ModelType_name = map[int32]string{
        0: "MODEL_TYPE_UNSPECIFIED",
        1: "CLOUD",
        2: "MOBILE_TF_LOW_LATENCY_1",
        3: "MOBILE_TF_VERSATILE_1",
        4: "MOBILE_TF_HIGH_ACCURACY_1",
    }
    AutoMlImageClassificationInputs_ModelType_value = map[string]int32{
        "MODEL_TYPE_UNSPECIFIED":    0,
        "CLOUD":                     1,
        "MOBILE_TF_LOW_LATENCY_1":   2,
        "MOBILE_TF_VERSATILE_1":     3,
        "MOBILE_TF_HIGH_ACCURACY_1": 4,
    }
)

Enum value maps for AutoMlImageClassificationMetadata_SuccessfulStopReason.

var (
    AutoMlImageClassificationMetadata_SuccessfulStopReason_name = map[int32]string{
        0: "SUCCESSFUL_STOP_REASON_UNSPECIFIED",
        1: "BUDGET_REACHED",
        2: "MODEL_CONVERGED",
    }
    AutoMlImageClassificationMetadata_SuccessfulStopReason_value = map[string]int32{
        "SUCCESSFUL_STOP_REASON_UNSPECIFIED": 0,
        "BUDGET_REACHED":                     1,
        "MODEL_CONVERGED":                    2,
    }
)

Enum value maps for AutoMlImageObjectDetectionInputs_ModelType.

var (
    AutoMlImageObjectDetectionInputs_ModelType_name = map[int32]string{
        0: "MODEL_TYPE_UNSPECIFIED",
        1: "CLOUD_HIGH_ACCURACY_1",
        2: "CLOUD_LOW_LATENCY_1",
        3: "MOBILE_TF_LOW_LATENCY_1",
        4: "MOBILE_TF_VERSATILE_1",
        5: "MOBILE_TF_HIGH_ACCURACY_1",
    }
    AutoMlImageObjectDetectionInputs_ModelType_value = map[string]int32{
        "MODEL_TYPE_UNSPECIFIED":    0,
        "CLOUD_HIGH_ACCURACY_1":     1,
        "CLOUD_LOW_LATENCY_1":       2,
        "MOBILE_TF_LOW_LATENCY_1":   3,
        "MOBILE_TF_VERSATILE_1":     4,
        "MOBILE_TF_HIGH_ACCURACY_1": 5,
    }
)

Enum value maps for AutoMlImageObjectDetectionMetadata_SuccessfulStopReason.

var (
    AutoMlImageObjectDetectionMetadata_SuccessfulStopReason_name = map[int32]string{
        0: "SUCCESSFUL_STOP_REASON_UNSPECIFIED",
        1: "BUDGET_REACHED",
        2: "MODEL_CONVERGED",
    }
    AutoMlImageObjectDetectionMetadata_SuccessfulStopReason_value = map[string]int32{
        "SUCCESSFUL_STOP_REASON_UNSPECIFIED": 0,
        "BUDGET_REACHED":                     1,
        "MODEL_CONVERGED":                    2,
    }
)

Enum value maps for AutoMlImageSegmentationInputs_ModelType.

var (
    AutoMlImageSegmentationInputs_ModelType_name = map[int32]string{
        0: "MODEL_TYPE_UNSPECIFIED",
        1: "CLOUD_HIGH_ACCURACY_1",
        2: "CLOUD_LOW_ACCURACY_1",
        3: "MOBILE_TF_LOW_LATENCY_1",
    }
    AutoMlImageSegmentationInputs_ModelType_value = map[string]int32{
        "MODEL_TYPE_UNSPECIFIED":  0,
        "CLOUD_HIGH_ACCURACY_1":   1,
        "CLOUD_LOW_ACCURACY_1":    2,
        "MOBILE_TF_LOW_LATENCY_1": 3,
    }
)

Enum value maps for AutoMlImageSegmentationMetadata_SuccessfulStopReason.

var (
    AutoMlImageSegmentationMetadata_SuccessfulStopReason_name = map[int32]string{
        0: "SUCCESSFUL_STOP_REASON_UNSPECIFIED",
        1: "BUDGET_REACHED",
        2: "MODEL_CONVERGED",
    }
    AutoMlImageSegmentationMetadata_SuccessfulStopReason_value = map[string]int32{
        "SUCCESSFUL_STOP_REASON_UNSPECIFIED": 0,
        "BUDGET_REACHED":                     1,
        "MODEL_CONVERGED":                    2,
    }
)

Enum value maps for AutoMlVideoActionRecognitionInputs_ModelType.

var (
    AutoMlVideoActionRecognitionInputs_ModelType_name = map[int32]string{
        0: "MODEL_TYPE_UNSPECIFIED",
        1: "CLOUD",
        2: "MOBILE_VERSATILE_1",
        3: "MOBILE_JETSON_VERSATILE_1",
        4: "MOBILE_CORAL_VERSATILE_1",
    }
    AutoMlVideoActionRecognitionInputs_ModelType_value = map[string]int32{
        "MODEL_TYPE_UNSPECIFIED":    0,
        "CLOUD":                     1,
        "MOBILE_VERSATILE_1":        2,
        "MOBILE_JETSON_VERSATILE_1": 3,
        "MOBILE_CORAL_VERSATILE_1":  4,
    }
)

Enum value maps for AutoMlVideoClassificationInputs_ModelType.

var (
    AutoMlVideoClassificationInputs_ModelType_name = map[int32]string{
        0: "MODEL_TYPE_UNSPECIFIED",
        1: "CLOUD",
        2: "MOBILE_VERSATILE_1",
        3: "MOBILE_JETSON_VERSATILE_1",
    }
    AutoMlVideoClassificationInputs_ModelType_value = map[string]int32{
        "MODEL_TYPE_UNSPECIFIED":    0,
        "CLOUD":                     1,
        "MOBILE_VERSATILE_1":        2,
        "MOBILE_JETSON_VERSATILE_1": 3,
    }
)

Enum value maps for AutoMlVideoObjectTrackingInputs_ModelType.

var (
    AutoMlVideoObjectTrackingInputs_ModelType_name = map[int32]string{
        0: "MODEL_TYPE_UNSPECIFIED",
        1: "CLOUD",
        2: "MOBILE_VERSATILE_1",
        3: "MOBILE_CORAL_VERSATILE_1",
        4: "MOBILE_CORAL_LOW_LATENCY_1",
        5: "MOBILE_JETSON_VERSATILE_1",
        6: "MOBILE_JETSON_LOW_LATENCY_1",
    }
    AutoMlVideoObjectTrackingInputs_ModelType_value = map[string]int32{
        "MODEL_TYPE_UNSPECIFIED":      0,
        "CLOUD":                       1,
        "MOBILE_VERSATILE_1":          2,
        "MOBILE_CORAL_VERSATILE_1":    3,
        "MOBILE_CORAL_LOW_LATENCY_1":  4,
        "MOBILE_JETSON_VERSATILE_1":   5,
        "MOBILE_JETSON_LOW_LATENCY_1": 6,
    }
)
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_image_classification_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_image_object_detection_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_image_segmentation_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_tables_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_text_classification_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_text_extraction_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_text_sentiment_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_time_series_forecasting_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_video_action_recognition_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_video_classification_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_automl_video_object_tracking_proto protoreflect.FileDescriptor
var File_google_cloud_aiplatform_v1_schema_trainingjob_definition_export_evaluated_data_items_config_proto protoreflect.FileDescriptor

type AutoMlForecasting

A TrainingJob that trains and uploads an AutoML Forecasting Model.

type AutoMlForecasting struct {

    // The input parameters of this TrainingJob.
    Inputs *AutoMlForecastingInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"`
    // The metadata information.
    Metadata *AutoMlForecastingMetadata `protobuf:"bytes,2,opt,name=metadata,proto3" json:"metadata,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlForecasting) Descriptor

func (*AutoMlForecasting) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlForecasting.ProtoReflect.Descriptor instead.

func (*AutoMlForecasting) GetInputs

func (x *AutoMlForecasting) GetInputs() *AutoMlForecastingInputs

func (*AutoMlForecasting) GetMetadata

func (x *AutoMlForecasting) GetMetadata() *AutoMlForecastingMetadata

func (*AutoMlForecasting) ProtoMessage

func (*AutoMlForecasting) ProtoMessage()

func (*AutoMlForecasting) ProtoReflect

func (x *AutoMlForecasting) ProtoReflect() protoreflect.Message

func (*AutoMlForecasting) Reset

func (x *AutoMlForecasting) Reset()

func (*AutoMlForecasting) String

func (x *AutoMlForecasting) String() string

type AutoMlForecastingInputs

type AutoMlForecastingInputs struct {

    // The name of the column that the model is to predict.
    TargetColumn string `protobuf:"bytes,1,opt,name=target_column,json=targetColumn,proto3" json:"target_column,omitempty"`
    // The name of the column that identifies the time series.
    TimeSeriesIdentifierColumn string `protobuf:"bytes,2,opt,name=time_series_identifier_column,json=timeSeriesIdentifierColumn,proto3" json:"time_series_identifier_column,omitempty"`
    // The name of the column that identifies time order in the time series.
    TimeColumn string `protobuf:"bytes,3,opt,name=time_column,json=timeColumn,proto3" json:"time_column,omitempty"`
    // Each transformation will apply transform function to given input column.
    // And the result will be used for training.
    // When creating transformation for BigQuery Struct column, the column should
    // be flattened using "." as the delimiter.
    Transformations []*AutoMlForecastingInputs_Transformation `protobuf:"bytes,4,rep,name=transformations,proto3" json:"transformations,omitempty"`
    // Objective function the model is optimizing towards. The training process
    // creates a model that optimizes the value of the objective
    // function over the validation set.
    //
    // The supported optimization objectives:
    //   "minimize-rmse" (default) - Minimize root-mean-squared error (RMSE).
    //   "minimize-mae" - Minimize mean-absolute error (MAE).
    //   "minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
    //   "minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE).
    //   "minimize-wape-mae" - Minimize the combination of weighted absolute
    //     percentage error (WAPE) and mean-absolute-error (MAE).
    //   "minimize-quantile-loss" - Minimize the quantile loss at the quantiles
    //     defined in `quantiles`.
    OptimizationObjective string `protobuf:"bytes,5,opt,name=optimization_objective,json=optimizationObjective,proto3" json:"optimization_objective,omitempty"`
    // Required. The train budget of creating this model, expressed in milli node
    // hours i.e. 1,000 value in this field means 1 node hour.
    //
    // The training cost of the model will not exceed this budget. The final cost
    // will be attempted to be close to the budget, though may end up being (even)
    // noticeably smaller - at the backend's discretion. This especially may
    // happen when further model training ceases to provide any improvements.
    //
    // If the budget is set to a value known to be insufficient to train a
    // model for the given dataset, the training won't be attempted and
    // will error.
    //
    // The train budget must be between 1,000 and 72,000 milli node hours,
    // inclusive.
    TrainBudgetMilliNodeHours int64 `protobuf:"varint,6,opt,name=train_budget_milli_node_hours,json=trainBudgetMilliNodeHours,proto3" json:"train_budget_milli_node_hours,omitempty"`
    // Column name that should be used as the weight column.
    // Higher values in this column give more importance to the row
    // during model training. The column must have numeric values between 0 and
    // 10000 inclusively; 0 means the row is ignored for training. If weight
    // column field is not set, then all rows are assumed to have equal weight
    // of 1.
    WeightColumn string `protobuf:"bytes,7,opt,name=weight_column,json=weightColumn,proto3" json:"weight_column,omitempty"`
    // Column names that should be used as static columns.
    // The value of these columns are static per time series.
    StaticColumns []string `protobuf:"bytes,8,rep,name=static_columns,json=staticColumns,proto3" json:"static_columns,omitempty"`
    // Column names that should be used as time variant past only columns.
    // This column contains information for the given entity (identified by the
    // time_series_identifier_column) that is known for the past but not the
    // future (e.g. population of a city in a given year, or weather on a given
    // day).
    TimeVariantPastOnlyColumns []string `protobuf:"bytes,9,rep,name=time_variant_past_only_columns,json=timeVariantPastOnlyColumns,proto3" json:"time_variant_past_only_columns,omitempty"`
    // Column names that should be used as time variant past and future columns.
    // This column contains information for the given entity (identified by the
    // key column) that is known for the past and the future
    TimeVariantPastAndFutureColumns []string `protobuf:"bytes,10,rep,name=time_variant_past_and_future_columns,json=timeVariantPastAndFutureColumns,proto3" json:"time_variant_past_and_future_columns,omitempty"`
    // Expected difference in time granularity between rows in the data. If it is
    // not set, the period is inferred from data.
    Period *AutoMlForecastingInputs_Period `protobuf:"bytes,11,opt,name=period,proto3" json:"period,omitempty"`
    // The number of periods offset into the future as the start of the forecast
    // window (the window of future values to predict, relative to the present.),
    // where each period is one unit of granularity as defined by the `period`
    // field above. Default to 0. Inclusive.
    ForecastWindowStart int64 `protobuf:"varint,12,opt,name=forecast_window_start,json=forecastWindowStart,proto3" json:"forecast_window_start,omitempty"`
    // The number of periods offset into the future as the end of the forecast
    // window (the window of future values to predict, relative to the present.),
    // where each period is one unit of granularity as defined by the `period`
    // field above. Inclusive.
    ForecastWindowEnd int64 `protobuf:"varint,13,opt,name=forecast_window_end,json=forecastWindowEnd,proto3" json:"forecast_window_end,omitempty"`
    // The number of periods offset into the past to restrict past sequence, where
    // each period is one unit of granularity as defined by the `period`. Default
    // value 0 means that it lets algorithm to define the value. Inclusive.
    PastHorizon int64 `protobuf:"varint,14,opt,name=past_horizon,json=pastHorizon,proto3" json:"past_horizon,omitempty"`
    // Configuration for exporting test set predictions to a BigQuery table. If
    // this configuration is absent, then the export is not performed.
    ExportEvaluatedDataItemsConfig *ExportEvaluatedDataItemsConfig `protobuf:"bytes,15,opt,name=export_evaluated_data_items_config,json=exportEvaluatedDataItemsConfig,proto3" json:"export_evaluated_data_items_config,omitempty"`
    // Quantiles to use for minimize-quantile-loss `optimization_objective`. Up to
    // 5 quantiles are allowed of values between 0 and 1, exclusive. Required if
    // the value of optimization_objective is minimize-quantile-loss. Represents
    // the percent quantiles to use for that objective. Quantiles must be unique.
    Quantiles []float64 `protobuf:"fixed64,16,rep,packed,name=quantiles,proto3" json:"quantiles,omitempty"`
    // Validation options for the data validation component. The available options
    // are:
    //   "fail-pipeline" - default, will validate against the validation and
    //                     fail the pipeline if it fails.
    //   "ignore-validation" - ignore the results of the validation and continue
    ValidationOptions string `protobuf:"bytes,17,opt,name=validation_options,json=validationOptions,proto3" json:"validation_options,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlForecastingInputs) Descriptor

func (*AutoMlForecastingInputs) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlForecastingInputs.ProtoReflect.Descriptor instead.

func (*AutoMlForecastingInputs) GetExportEvaluatedDataItemsConfig

func (x *AutoMlForecastingInputs) GetExportEvaluatedDataItemsConfig() *ExportEvaluatedDataItemsConfig

func (*AutoMlForecastingInputs) GetForecastWindowEnd

func (x *AutoMlForecastingInputs) GetForecastWindowEnd() int64

func (*AutoMlForecastingInputs) GetForecastWindowStart

func (x *AutoMlForecastingInputs) GetForecastWindowStart() int64

func (*AutoMlForecastingInputs) GetOptimizationObjective

func (x *AutoMlForecastingInputs) GetOptimizationObjective() string

func (*AutoMlForecastingInputs) GetPastHorizon

func (x *AutoMlForecastingInputs) GetPastHorizon() int64

func (*AutoMlForecastingInputs) GetPeriod

func (x *AutoMlForecastingInputs) GetPeriod() *AutoMlForecastingInputs_Period

func (*AutoMlForecastingInputs) GetQuantiles

func (x *AutoMlForecastingInputs) GetQuantiles() []float64

func (*AutoMlForecastingInputs) GetStaticColumns

func (x *AutoMlForecastingInputs) GetStaticColumns() []string

func (*AutoMlForecastingInputs) GetTargetColumn

func (x *AutoMlForecastingInputs) GetTargetColumn() string

func (*AutoMlForecastingInputs) GetTimeColumn

func (x *AutoMlForecastingInputs) GetTimeColumn() string

func (*AutoMlForecastingInputs) GetTimeSeriesIdentifierColumn

func (x *AutoMlForecastingInputs) GetTimeSeriesIdentifierColumn() string

func (*AutoMlForecastingInputs) GetTimeVariantPastAndFutureColumns

func (x *AutoMlForecastingInputs) GetTimeVariantPastAndFutureColumns() []string

func (*AutoMlForecastingInputs) GetTimeVariantPastOnlyColumns

func (x *AutoMlForecastingInputs) GetTimeVariantPastOnlyColumns() []string

func (*AutoMlForecastingInputs) GetTrainBudgetMilliNodeHours

func (x *AutoMlForecastingInputs) GetTrainBudgetMilliNodeHours() int64

func (*AutoMlForecastingInputs) GetTransformations

func (x *AutoMlForecastingInputs) GetTransformations() []*AutoMlForecastingInputs_Transformation

func (*AutoMlForecastingInputs) GetValidationOptions

func (x *AutoMlForecastingInputs) GetValidationOptions() string

func (*AutoMlForecastingInputs) GetWeightColumn

func (x *AutoMlForecastingInputs) GetWeightColumn() string

func (*AutoMlForecastingInputs) ProtoMessage

func (*AutoMlForecastingInputs) ProtoMessage()

func (*AutoMlForecastingInputs) ProtoReflect

func (x *AutoMlForecastingInputs) ProtoReflect() protoreflect.Message

func (*AutoMlForecastingInputs) Reset

func (x *AutoMlForecastingInputs) Reset()

func (*AutoMlForecastingInputs) String

func (x *AutoMlForecastingInputs) String() string

type AutoMlForecastingInputs_Period

A duration of time expressed in time granularity units.

type AutoMlForecastingInputs_Period struct {

    // The time granularity unit of this time period.
    // The supported unit are:
    //  "minute"
    //  "hour"
    //  "day"
    //  "week"
    //  "month"
    //  "year"
    Unit string `protobuf:"bytes,1,opt,name=unit,proto3" json:"unit,omitempty"`
    // The number of units per period, e.g. 3 weeks or 2 months.
    Quantity int64 `protobuf:"varint,2,opt,name=quantity,proto3" json:"quantity,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlForecastingInputs_Period) Descriptor

func (*AutoMlForecastingInputs_Period) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlForecastingInputs_Period.ProtoReflect.Descriptor instead.

func (*AutoMlForecastingInputs_Period) GetQuantity

func (x *AutoMlForecastingInputs_Period) GetQuantity() int64

func (*AutoMlForecastingInputs_Period) GetUnit

func (x *AutoMlForecastingInputs_Period) GetUnit() string

func (*AutoMlForecastingInputs_Period) ProtoMessage

func (*AutoMlForecastingInputs_Period) ProtoMessage()

func (*AutoMlForecastingInputs_Period) ProtoReflect

func (x *AutoMlForecastingInputs_Period) ProtoReflect() protoreflect.Message

func (*AutoMlForecastingInputs_Period) Reset

func (x *AutoMlForecastingInputs_Period) Reset()

func (*AutoMlForecastingInputs_Period) String

func (x *AutoMlForecastingInputs_Period) String() string

type AutoMlForecastingInputs_Transformation

type AutoMlForecastingInputs_Transformation struct {

    // The transformation that the training pipeline will apply to the input
    // columns.
    //
    // Types that are assignable to TransformationDetail:
    //	*AutoMlForecastingInputs_Transformation_Auto
    //	*AutoMlForecastingInputs_Transformation_Numeric
    //	*AutoMlForecastingInputs_Transformation_Categorical
    //	*AutoMlForecastingInputs_Transformation_Timestamp
    //	*AutoMlForecastingInputs_Transformation_Text
    //	*AutoMlForecastingInputs_Transformation_RepeatedNumeric
    //	*AutoMlForecastingInputs_Transformation_RepeatedCategorical
    //	*AutoMlForecastingInputs_Transformation_RepeatedText
    TransformationDetail isAutoMlForecastingInputs_Transformation_TransformationDetail `protobuf_oneof:"transformation_detail"`
    // contains filtered or unexported fields
}

func (*AutoMlForecastingInputs_Transformation) Descriptor

func (*AutoMlForecastingInputs_Transformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlForecastingInputs_Transformation.ProtoReflect.Descriptor instead.

func (*AutoMlForecastingInputs_Transformation) GetAuto

func (x *AutoMlForecastingInputs_Transformation) GetAuto() *AutoMlForecastingInputs_Transformation_AutoTransformation

func (*AutoMlForecastingInputs_Transformation) GetCategorical

func (x *AutoMlForecastingInputs_Transformation) GetCategorical() *AutoMlForecastingInputs_Transformation_CategoricalTransformation

func (*AutoMlForecastingInputs_Transformation) GetNumeric

func (x *AutoMlForecastingInputs_Transformation) GetNumeric() *AutoMlForecastingInputs_Transformation_NumericTransformation

func (*AutoMlForecastingInputs_Transformation) GetRepeatedCategorical

func (x *AutoMlForecastingInputs_Transformation) GetRepeatedCategorical() *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation

func (*AutoMlForecastingInputs_Transformation) GetRepeatedNumeric

func (x *AutoMlForecastingInputs_Transformation) GetRepeatedNumeric() *AutoMlForecastingInputs_Transformation_NumericArrayTransformation

func (*AutoMlForecastingInputs_Transformation) GetRepeatedText

func (x *AutoMlForecastingInputs_Transformation) GetRepeatedText() *AutoMlForecastingInputs_Transformation_TextArrayTransformation

func (*AutoMlForecastingInputs_Transformation) GetText

func (x *AutoMlForecastingInputs_Transformation) GetText() *AutoMlForecastingInputs_Transformation_TextTransformation

func (*AutoMlForecastingInputs_Transformation) GetTimestamp

func (x *AutoMlForecastingInputs_Transformation) GetTimestamp() *AutoMlForecastingInputs_Transformation_TimestampTransformation

func (*AutoMlForecastingInputs_Transformation) GetTransformationDetail

func (m *AutoMlForecastingInputs_Transformation) GetTransformationDetail() isAutoMlForecastingInputs_Transformation_TransformationDetail

func (*AutoMlForecastingInputs_Transformation) ProtoMessage

func (*AutoMlForecastingInputs_Transformation) ProtoMessage()

func (*AutoMlForecastingInputs_Transformation) ProtoReflect

func (x *AutoMlForecastingInputs_Transformation) ProtoReflect() protoreflect.Message

func (*AutoMlForecastingInputs_Transformation) Reset

func (x *AutoMlForecastingInputs_Transformation) Reset()

func (*AutoMlForecastingInputs_Transformation) String

func (x *AutoMlForecastingInputs_Transformation) String() string

type AutoMlForecastingInputs_Transformation_Auto

type AutoMlForecastingInputs_Transformation_Auto struct {
    Auto *AutoMlForecastingInputs_Transformation_AutoTransformation `protobuf:"bytes,1,opt,name=auto,proto3,oneof"`
}

type AutoMlForecastingInputs_Transformation_AutoTransformation

Training pipeline will infer the proper transformation based on the statistic of dataset.

type AutoMlForecastingInputs_Transformation_AutoTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlForecastingInputs_Transformation_AutoTransformation) Descriptor

func (*AutoMlForecastingInputs_Transformation_AutoTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlForecastingInputs_Transformation_AutoTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlForecastingInputs_Transformation_AutoTransformation) GetColumnName

func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) GetColumnName() string

func (*AutoMlForecastingInputs_Transformation_AutoTransformation) ProtoMessage

func (*AutoMlForecastingInputs_Transformation_AutoTransformation) ProtoMessage()

func (*AutoMlForecastingInputs_Transformation_AutoTransformation) ProtoReflect

func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlForecastingInputs_Transformation_AutoTransformation) Reset

func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) Reset()

func (*AutoMlForecastingInputs_Transformation_AutoTransformation) String

func (x *AutoMlForecastingInputs_Transformation_AutoTransformation) String() string

type AutoMlForecastingInputs_Transformation_Categorical

type AutoMlForecastingInputs_Transformation_Categorical struct {
    Categorical *AutoMlForecastingInputs_Transformation_CategoricalTransformation `protobuf:"bytes,3,opt,name=categorical,proto3,oneof"`
}

type AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation

Treats the column as categorical array and performs following transformation functions. * For each element in the array, convert the category name to a dictionary

lookup index and generate an embedding for each index.
Combine the embedding of all elements into a single embedding using
the mean.

* Empty arrays treated as an embedding of zeroes.

type AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) Descriptor

func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) GetColumnName

func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) GetColumnName() string

func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) ProtoMessage

func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) ProtoMessage()

func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) ProtoReflect

func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) Reset

func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) Reset()

func (*AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) String

func (x *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation) String() string

type AutoMlForecastingInputs_Transformation_CategoricalTransformation

Training pipeline will perform following transformation functions. * The categorical string as is--no change to case, punctuation, spelling,

	tense, and so on.
  - Convert the category name to a dictionary lookup index and generate an
    embedding for each index.
  - Categories that appear less than 5 times in the training dataset are
    treated as the "unknown" category. The "unknown" category gets its own
    special lookup index and resulting embedding.
type AutoMlForecastingInputs_Transformation_CategoricalTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) Descriptor

func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlForecastingInputs_Transformation_CategoricalTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) GetColumnName

func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) GetColumnName() string

func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) ProtoMessage

func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) ProtoMessage()

func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) ProtoReflect

func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) Reset

func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) Reset()

func (*AutoMlForecastingInputs_Transformation_CategoricalTransformation) String

func (x *AutoMlForecastingInputs_Transformation_CategoricalTransformation) String() string

type AutoMlForecastingInputs_Transformation_Numeric

type AutoMlForecastingInputs_Transformation_Numeric struct {
    Numeric *AutoMlForecastingInputs_Transformation_NumericTransformation `protobuf:"bytes,2,opt,name=numeric,proto3,oneof"`
}

type AutoMlForecastingInputs_Transformation_NumericArrayTransformation

Treats the column as numerical array and performs following transformation functions.

type AutoMlForecastingInputs_Transformation_NumericArrayTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // If invalid values is allowed, the training pipeline will create a
    // boolean feature that indicated whether the value is valid.
    // Otherwise, the training pipeline will discard the input row from
    // trainining data.
    InvalidValuesAllowed bool `protobuf:"varint,2,opt,name=invalid_values_allowed,json=invalidValuesAllowed,proto3" json:"invalid_values_allowed,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) Descriptor

func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlForecastingInputs_Transformation_NumericArrayTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) GetColumnName

func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) GetColumnName() string

func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) GetInvalidValuesAllowed

func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) GetInvalidValuesAllowed() bool

func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) ProtoMessage

func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) ProtoMessage()

func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) ProtoReflect

func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) Reset

func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) Reset()

func (*AutoMlForecastingInputs_Transformation_NumericArrayTransformation) String

func (x *AutoMlForecastingInputs_Transformation_NumericArrayTransformation) String() string

type AutoMlForecastingInputs_Transformation_NumericTransformation

Training pipeline will perform following transformation functions.

type AutoMlForecastingInputs_Transformation_NumericTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // If invalid values is allowed, the training pipeline will create a
    // boolean feature that indicated whether the value is valid.
    // Otherwise, the training pipeline will discard the input row from
    // trainining data.
    InvalidValuesAllowed bool `protobuf:"varint,2,opt,name=invalid_values_allowed,json=invalidValuesAllowed,proto3" json:"invalid_values_allowed,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlForecastingInputs_Transformation_NumericTransformation) Descriptor

func (*AutoMlForecastingInputs_Transformation_NumericTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlForecastingInputs_Transformation_NumericTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlForecastingInputs_Transformation_NumericTransformation) GetColumnName

func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) GetColumnName() string

func (*AutoMlForecastingInputs_Transformation_NumericTransformation) GetInvalidValuesAllowed

func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) GetInvalidValuesAllowed() bool

func (*AutoMlForecastingInputs_Transformation_NumericTransformation) ProtoMessage

func (*AutoMlForecastingInputs_Transformation_NumericTransformation) ProtoMessage()

func (*AutoMlForecastingInputs_Transformation_NumericTransformation) ProtoReflect

func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlForecastingInputs_Transformation_NumericTransformation) Reset

func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) Reset()

func (*AutoMlForecastingInputs_Transformation_NumericTransformation) String

func (x *AutoMlForecastingInputs_Transformation_NumericTransformation) String() string

type AutoMlForecastingInputs_Transformation_RepeatedCategorical

type AutoMlForecastingInputs_Transformation_RepeatedCategorical struct {
    RepeatedCategorical *AutoMlForecastingInputs_Transformation_CategoricalArrayTransformation `protobuf:"bytes,7,opt,name=repeated_categorical,json=repeatedCategorical,proto3,oneof"`
}

type AutoMlForecastingInputs_Transformation_RepeatedNumeric

type AutoMlForecastingInputs_Transformation_RepeatedNumeric struct {
    RepeatedNumeric *AutoMlForecastingInputs_Transformation_NumericArrayTransformation `protobuf:"bytes,6,opt,name=repeated_numeric,json=repeatedNumeric,proto3,oneof"`
}

type AutoMlForecastingInputs_Transformation_RepeatedText

type AutoMlForecastingInputs_Transformation_RepeatedText struct {
    RepeatedText *AutoMlForecastingInputs_Transformation_TextArrayTransformation `protobuf:"bytes,8,opt,name=repeated_text,json=repeatedText,proto3,oneof"`
}

type AutoMlForecastingInputs_Transformation_Text

type AutoMlForecastingInputs_Transformation_Text struct {
    Text *AutoMlForecastingInputs_Transformation_TextTransformation `protobuf:"bytes,5,opt,name=text,proto3,oneof"`
}

type AutoMlForecastingInputs_Transformation_TextArrayTransformation

Treats the column as text array and performs following transformation functions. * Concatenate all text values in the array into a single text value using

a space (" ") as a delimiter, and then treat the result as a single
text value. Apply the transformations for Text columns.

* Empty arrays treated as an empty text.

type AutoMlForecastingInputs_Transformation_TextArrayTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) Descriptor

func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlForecastingInputs_Transformation_TextArrayTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) GetColumnName

func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) GetColumnName() string

func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) ProtoMessage

func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) ProtoMessage()

func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) ProtoReflect

func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) Reset

func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) Reset()

func (*AutoMlForecastingInputs_Transformation_TextArrayTransformation) String

func (x *AutoMlForecastingInputs_Transformation_TextArrayTransformation) String() string

type AutoMlForecastingInputs_Transformation_TextTransformation

Training pipeline will perform following transformation functions. * The text as is--no change to case, punctuation, spelling, tense, and so

on.

* Tokenize text to words. Convert each words to a dictionary lookup index

and generate an embedding for each index. Combine the embedding of all
elements into a single embedding using the mean.

* Tokenization is based on unicode script boundaries. * Missing values get their own lookup index and resulting embedding. * Stop-words receive no special treatment and are not removed.

type AutoMlForecastingInputs_Transformation_TextTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlForecastingInputs_Transformation_TextTransformation) Descriptor

func (*AutoMlForecastingInputs_Transformation_TextTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlForecastingInputs_Transformation_TextTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlForecastingInputs_Transformation_TextTransformation) GetColumnName

func (x *AutoMlForecastingInputs_Transformation_TextTransformation) GetColumnName() string

func (*AutoMlForecastingInputs_Transformation_TextTransformation) ProtoMessage

func (*AutoMlForecastingInputs_Transformation_TextTransformation) ProtoMessage()

func (*AutoMlForecastingInputs_Transformation_TextTransformation) ProtoReflect

func (x *AutoMlForecastingInputs_Transformation_TextTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlForecastingInputs_Transformation_TextTransformation) Reset

func (x *AutoMlForecastingInputs_Transformation_TextTransformation) Reset()

func (*AutoMlForecastingInputs_Transformation_TextTransformation) String

func (x *AutoMlForecastingInputs_Transformation_TextTransformation) String() string

type AutoMlForecastingInputs_Transformation_Timestamp

type AutoMlForecastingInputs_Transformation_Timestamp struct {
    Timestamp *AutoMlForecastingInputs_Transformation_TimestampTransformation `protobuf:"bytes,4,opt,name=timestamp,proto3,oneof"`
}

type AutoMlForecastingInputs_Transformation_TimestampTransformation

Training pipeline will perform following transformation functions.

type AutoMlForecastingInputs_Transformation_TimestampTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // The format in which that time field is expressed. The time_format must
    // either be one of:
    // * `unix-seconds`
    // * `unix-milliseconds`
    // * `unix-microseconds`
    // * `unix-nanoseconds`
    // (for respectively number of seconds, milliseconds, microseconds and
    // nanoseconds since start of the Unix epoch);
    // or be written in `strftime` syntax. If time_format is not set, then the
    // default format is RFC 3339 `date-time` format, where
    // `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z)
    TimeFormat string `protobuf:"bytes,2,opt,name=time_format,json=timeFormat,proto3" json:"time_format,omitempty"`
    // If invalid values is allowed, the training pipeline will create a
    // boolean feature that indicated whether the value is valid.
    // Otherwise, the training pipeline will discard the input row from
    // trainining data.
    InvalidValuesAllowed bool `protobuf:"varint,3,opt,name=invalid_values_allowed,json=invalidValuesAllowed,proto3" json:"invalid_values_allowed,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) Descriptor

func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlForecastingInputs_Transformation_TimestampTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) GetColumnName

func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) GetColumnName() string

func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) GetInvalidValuesAllowed

func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) GetInvalidValuesAllowed() bool

func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) GetTimeFormat

func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) GetTimeFormat() string

func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) ProtoMessage

func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) ProtoMessage()

func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) ProtoReflect

func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) Reset

func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) Reset()

func (*AutoMlForecastingInputs_Transformation_TimestampTransformation) String

func (x *AutoMlForecastingInputs_Transformation_TimestampTransformation) String() string

type AutoMlForecastingMetadata

Model metadata specific to AutoML Forecasting.

type AutoMlForecastingMetadata struct {

    // Output only. The actual training cost of the model, expressed in milli
    // node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
    // to not exceed the train budget.
    TrainCostMilliNodeHours int64 `protobuf:"varint,1,opt,name=train_cost_milli_node_hours,json=trainCostMilliNodeHours,proto3" json:"train_cost_milli_node_hours,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlForecastingMetadata) Descriptor

func (*AutoMlForecastingMetadata) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlForecastingMetadata.ProtoReflect.Descriptor instead.

func (*AutoMlForecastingMetadata) GetTrainCostMilliNodeHours

func (x *AutoMlForecastingMetadata) GetTrainCostMilliNodeHours() int64

func (*AutoMlForecastingMetadata) ProtoMessage

func (*AutoMlForecastingMetadata) ProtoMessage()

func (*AutoMlForecastingMetadata) ProtoReflect

func (x *AutoMlForecastingMetadata) ProtoReflect() protoreflect.Message

func (*AutoMlForecastingMetadata) Reset

func (x *AutoMlForecastingMetadata) Reset()

func (*AutoMlForecastingMetadata) String

func (x *AutoMlForecastingMetadata) String() string

type AutoMlImageClassification

A TrainingJob that trains and uploads an AutoML Image Classification Model.

type AutoMlImageClassification struct {

    // The input parameters of this TrainingJob.
    Inputs *AutoMlImageClassificationInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"`
    // The metadata information.
    Metadata *AutoMlImageClassificationMetadata `protobuf:"bytes,2,opt,name=metadata,proto3" json:"metadata,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlImageClassification) Descriptor

func (*AutoMlImageClassification) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlImageClassification.ProtoReflect.Descriptor instead.

func (*AutoMlImageClassification) GetInputs

func (x *AutoMlImageClassification) GetInputs() *AutoMlImageClassificationInputs

func (*AutoMlImageClassification) GetMetadata

func (x *AutoMlImageClassification) GetMetadata() *AutoMlImageClassificationMetadata

func (*AutoMlImageClassification) ProtoMessage

func (*AutoMlImageClassification) ProtoMessage()

func (*AutoMlImageClassification) ProtoReflect

func (x *AutoMlImageClassification) ProtoReflect() protoreflect.Message

func (*AutoMlImageClassification) Reset

func (x *AutoMlImageClassification) Reset()

func (*AutoMlImageClassification) String

func (x *AutoMlImageClassification) String() string

type AutoMlImageClassificationInputs

type AutoMlImageClassificationInputs struct {
    ModelType AutoMlImageClassificationInputs_ModelType `protobuf:"varint,1,opt,name=model_type,json=modelType,proto3,enum=google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageClassificationInputs_ModelType" json:"model_type,omitempty"`
    // The ID of the `base` model. If it is specified, the new model will be
    // trained based on the `base` model. Otherwise, the new model will be
    // trained from scratch. The `base` model must be in the same
    // Project and Location as the new Model to train, and have the same
    // modelType.
    BaseModelId string `protobuf:"bytes,2,opt,name=base_model_id,json=baseModelId,proto3" json:"base_model_id,omitempty"`
    // The training budget of creating this model, expressed in milli node
    // hours i.e. 1,000 value in this field means 1 node hour. The actual
    // metadata.costMilliNodeHours will be equal or less than this value.
    // If further model training ceases to provide any improvements, it will
    // stop without using the full budget and the metadata.successfulStopReason
    // will be `model-converged`.
    // Note, node_hour  = actual_hour * number_of_nodes_involved.
    // For modelType `cloud`(default), the budget must be between 8,000
    // and 800,000 milli node hours, inclusive. The default value is 192,000
    // which represents one day in wall time, considering 8 nodes are used.
    // For model types `mobile-tf-low-latency-1`, `mobile-tf-versatile-1`,
    // `mobile-tf-high-accuracy-1`, the training budget must be between
    // 1,000 and 100,000 milli node hours, inclusive.
    // The default value is 24,000 which represents one day in wall time on a
    // single node that is used.
    BudgetMilliNodeHours int64 `protobuf:"varint,3,opt,name=budget_milli_node_hours,json=budgetMilliNodeHours,proto3" json:"budget_milli_node_hours,omitempty"`
    // Use the entire training budget. This disables the early stopping feature.
    // When false the early stopping feature is enabled, which means that
    // AutoML Image Classification might stop training before the entire
    // training budget has been used.
    DisableEarlyStopping bool `protobuf:"varint,4,opt,name=disable_early_stopping,json=disableEarlyStopping,proto3" json:"disable_early_stopping,omitempty"`
    // If false, a single-label (multi-class) Model will be trained (i.e.
    // assuming that for each image just up to one annotation may be
    // applicable). If true, a multi-label Model will be trained (i.e.
    // assuming that for each image multiple annotations may be applicable).
    MultiLabel bool `protobuf:"varint,5,opt,name=multi_label,json=multiLabel,proto3" json:"multi_label,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlImageClassificationInputs) Descriptor

func (*AutoMlImageClassificationInputs) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlImageClassificationInputs.ProtoReflect.Descriptor instead.

func (*AutoMlImageClassificationInputs) GetBaseModelId

func (x *AutoMlImageClassificationInputs) GetBaseModelId() string

func (*AutoMlImageClassificationInputs) GetBudgetMilliNodeHours

func (x *AutoMlImageClassificationInputs) GetBudgetMilliNodeHours() int64

func (*AutoMlImageClassificationInputs) GetDisableEarlyStopping

func (x *AutoMlImageClassificationInputs) GetDisableEarlyStopping() bool

func (*AutoMlImageClassificationInputs) GetModelType

func (x *AutoMlImageClassificationInputs) GetModelType() AutoMlImageClassificationInputs_ModelType

func (*AutoMlImageClassificationInputs) GetMultiLabel

func (x *AutoMlImageClassificationInputs) GetMultiLabel() bool

func (*AutoMlImageClassificationInputs) ProtoMessage

func (*AutoMlImageClassificationInputs) ProtoMessage()

func (*AutoMlImageClassificationInputs) ProtoReflect

func (x *AutoMlImageClassificationInputs) ProtoReflect() protoreflect.Message

func (*AutoMlImageClassificationInputs) Reset

func (x *AutoMlImageClassificationInputs) Reset()

func (*AutoMlImageClassificationInputs) String

func (x *AutoMlImageClassificationInputs) String() string

type AutoMlImageClassificationInputs_ModelType

type AutoMlImageClassificationInputs_ModelType int32
const (
    // Should not be set.
    AutoMlImageClassificationInputs_MODEL_TYPE_UNSPECIFIED AutoMlImageClassificationInputs_ModelType = 0
    // A Model best tailored to be used within Google Cloud, and which cannot
    // be exported.
    // Default.
    AutoMlImageClassificationInputs_CLOUD AutoMlImageClassificationInputs_ModelType = 1
    // A model that, in addition to being available within Google
    // Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow
    // or Core ML model and used on a mobile or edge device afterwards.
    // Expected to have low latency, but may have lower prediction
    // quality than other mobile models.
    AutoMlImageClassificationInputs_MOBILE_TF_LOW_LATENCY_1 AutoMlImageClassificationInputs_ModelType = 2
    // A model that, in addition to being available within Google
    // Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow
    // or Core ML model and used on a mobile or edge device with afterwards.
    AutoMlImageClassificationInputs_MOBILE_TF_VERSATILE_1 AutoMlImageClassificationInputs_ModelType = 3
    // A model that, in addition to being available within Google
    // Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow
    // or Core ML model and used on a mobile or edge device afterwards.
    // Expected to have a higher latency, but should also have a higher
    // prediction quality than other mobile models.
    AutoMlImageClassificationInputs_MOBILE_TF_HIGH_ACCURACY_1 AutoMlImageClassificationInputs_ModelType = 4
)

func (AutoMlImageClassificationInputs_ModelType) Descriptor

func (AutoMlImageClassificationInputs_ModelType) Descriptor() protoreflect.EnumDescriptor

func (AutoMlImageClassificationInputs_ModelType) Enum

func (x AutoMlImageClassificationInputs_ModelType) Enum() *AutoMlImageClassificationInputs_ModelType

func (AutoMlImageClassificationInputs_ModelType) EnumDescriptor

func (AutoMlImageClassificationInputs_ModelType) EnumDescriptor() ([]byte, []int)

Deprecated: Use AutoMlImageClassificationInputs_ModelType.Descriptor instead.

func (AutoMlImageClassificationInputs_ModelType) Number

func (x AutoMlImageClassificationInputs_ModelType) Number() protoreflect.EnumNumber

func (AutoMlImageClassificationInputs_ModelType) String

func (x AutoMlImageClassificationInputs_ModelType) String() string

func (AutoMlImageClassificationInputs_ModelType) Type

func (AutoMlImageClassificationInputs_ModelType) Type() protoreflect.EnumType

type AutoMlImageClassificationMetadata

type AutoMlImageClassificationMetadata struct {

    // The actual training cost of creating this model, expressed in
    // milli node hours, i.e. 1,000 value in this field means 1 node hour.
    // Guaranteed to not exceed inputs.budgetMilliNodeHours.
    CostMilliNodeHours int64 `protobuf:"varint,1,opt,name=cost_milli_node_hours,json=costMilliNodeHours,proto3" json:"cost_milli_node_hours,omitempty"`
    // For successful job completions, this is the reason why the job has
    // finished.
    SuccessfulStopReason AutoMlImageClassificationMetadata_SuccessfulStopReason `protobuf:"varint,2,opt,name=successful_stop_reason,json=successfulStopReason,proto3,enum=google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageClassificationMetadata_SuccessfulStopReason" json:"successful_stop_reason,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlImageClassificationMetadata) Descriptor

func (*AutoMlImageClassificationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlImageClassificationMetadata.ProtoReflect.Descriptor instead.

func (*AutoMlImageClassificationMetadata) GetCostMilliNodeHours

func (x *AutoMlImageClassificationMetadata) GetCostMilliNodeHours() int64

func (*AutoMlImageClassificationMetadata) GetSuccessfulStopReason

func (x *AutoMlImageClassificationMetadata) GetSuccessfulStopReason() AutoMlImageClassificationMetadata_SuccessfulStopReason

func (*AutoMlImageClassificationMetadata) ProtoMessage

func (*AutoMlImageClassificationMetadata) ProtoMessage()

func (*AutoMlImageClassificationMetadata) ProtoReflect

func (x *AutoMlImageClassificationMetadata) ProtoReflect() protoreflect.Message

func (*AutoMlImageClassificationMetadata) Reset

func (x *AutoMlImageClassificationMetadata) Reset()

func (*AutoMlImageClassificationMetadata) String

func (x *AutoMlImageClassificationMetadata) String() string

type AutoMlImageClassificationMetadata_SuccessfulStopReason

type AutoMlImageClassificationMetadata_SuccessfulStopReason int32
const (
    // Should not be set.
    AutoMlImageClassificationMetadata_SUCCESSFUL_STOP_REASON_UNSPECIFIED AutoMlImageClassificationMetadata_SuccessfulStopReason = 0
    // The inputs.budgetMilliNodeHours had been reached.
    AutoMlImageClassificationMetadata_BUDGET_REACHED AutoMlImageClassificationMetadata_SuccessfulStopReason = 1
    // Further training of the Model ceased to increase its quality, since it
    // already has converged.
    AutoMlImageClassificationMetadata_MODEL_CONVERGED AutoMlImageClassificationMetadata_SuccessfulStopReason = 2
)

func (AutoMlImageClassificationMetadata_SuccessfulStopReason) Descriptor

func (AutoMlImageClassificationMetadata_SuccessfulStopReason) Descriptor() protoreflect.EnumDescriptor

func (AutoMlImageClassificationMetadata_SuccessfulStopReason) Enum

func (x AutoMlImageClassificationMetadata_SuccessfulStopReason) Enum() *AutoMlImageClassificationMetadata_SuccessfulStopReason

func (AutoMlImageClassificationMetadata_SuccessfulStopReason) EnumDescriptor

func (AutoMlImageClassificationMetadata_SuccessfulStopReason) EnumDescriptor() ([]byte, []int)

Deprecated: Use AutoMlImageClassificationMetadata_SuccessfulStopReason.Descriptor instead.

func (AutoMlImageClassificationMetadata_SuccessfulStopReason) Number

func (x AutoMlImageClassificationMetadata_SuccessfulStopReason) Number() protoreflect.EnumNumber

func (AutoMlImageClassificationMetadata_SuccessfulStopReason) String

func (x AutoMlImageClassificationMetadata_SuccessfulStopReason) String() string

func (AutoMlImageClassificationMetadata_SuccessfulStopReason) Type

func (AutoMlImageClassificationMetadata_SuccessfulStopReason) Type() protoreflect.EnumType

type AutoMlImageObjectDetection

A TrainingJob that trains and uploads an AutoML Image Object Detection Model.

type AutoMlImageObjectDetection struct {

    // The input parameters of this TrainingJob.
    Inputs *AutoMlImageObjectDetectionInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"`
    // The metadata information
    Metadata *AutoMlImageObjectDetectionMetadata `protobuf:"bytes,2,opt,name=metadata,proto3" json:"metadata,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlImageObjectDetection) Descriptor

func (*AutoMlImageObjectDetection) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlImageObjectDetection.ProtoReflect.Descriptor instead.

func (*AutoMlImageObjectDetection) GetInputs

func (x *AutoMlImageObjectDetection) GetInputs() *AutoMlImageObjectDetectionInputs

func (*AutoMlImageObjectDetection) GetMetadata

func (x *AutoMlImageObjectDetection) GetMetadata() *AutoMlImageObjectDetectionMetadata

func (*AutoMlImageObjectDetection) ProtoMessage

func (*AutoMlImageObjectDetection) ProtoMessage()

func (*AutoMlImageObjectDetection) ProtoReflect

func (x *AutoMlImageObjectDetection) ProtoReflect() protoreflect.Message

func (*AutoMlImageObjectDetection) Reset

func (x *AutoMlImageObjectDetection) Reset()

func (*AutoMlImageObjectDetection) String

func (x *AutoMlImageObjectDetection) String() string

type AutoMlImageObjectDetectionInputs

type AutoMlImageObjectDetectionInputs struct {
    ModelType AutoMlImageObjectDetectionInputs_ModelType `protobuf:"varint,1,opt,name=model_type,json=modelType,proto3,enum=google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageObjectDetectionInputs_ModelType" json:"model_type,omitempty"`
    // The training budget of creating this model, expressed in milli node
    // hours i.e. 1,000 value in this field means 1 node hour. The actual
    // metadata.costMilliNodeHours will be equal or less than this value.
    // If further model training ceases to provide any improvements, it will
    // stop without using the full budget and the metadata.successfulStopReason
    // will be `model-converged`.
    // Note, node_hour  = actual_hour * number_of_nodes_involved.
    // For modelType `cloud`(default), the budget must be between 20,000
    // and 900,000 milli node hours, inclusive. The default value is 216,000
    // which represents one day in wall time, considering 9 nodes are used.
    // For model types `mobile-tf-low-latency-1`, `mobile-tf-versatile-1`,
    // `mobile-tf-high-accuracy-1`
    // the training budget must be between 1,000 and 100,000 milli node hours,
    // inclusive. The default value is 24,000 which represents one day in
    // wall time on a single node that is used.
    BudgetMilliNodeHours int64 `protobuf:"varint,2,opt,name=budget_milli_node_hours,json=budgetMilliNodeHours,proto3" json:"budget_milli_node_hours,omitempty"`
    // Use the entire training budget. This disables the early stopping feature.
    // When false the early stopping feature is enabled, which means that AutoML
    // Image Object Detection might stop training before the entire training
    // budget has been used.
    DisableEarlyStopping bool `protobuf:"varint,3,opt,name=disable_early_stopping,json=disableEarlyStopping,proto3" json:"disable_early_stopping,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlImageObjectDetectionInputs) Descriptor

func (*AutoMlImageObjectDetectionInputs) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlImageObjectDetectionInputs.ProtoReflect.Descriptor instead.

func (*AutoMlImageObjectDetectionInputs) GetBudgetMilliNodeHours

func (x *AutoMlImageObjectDetectionInputs) GetBudgetMilliNodeHours() int64

func (*AutoMlImageObjectDetectionInputs) GetDisableEarlyStopping

func (x *AutoMlImageObjectDetectionInputs) GetDisableEarlyStopping() bool

func (*AutoMlImageObjectDetectionInputs) GetModelType

func (x *AutoMlImageObjectDetectionInputs) GetModelType() AutoMlImageObjectDetectionInputs_ModelType

func (*AutoMlImageObjectDetectionInputs) ProtoMessage

func (*AutoMlImageObjectDetectionInputs) ProtoMessage()

func (*AutoMlImageObjectDetectionInputs) ProtoReflect

func (x *AutoMlImageObjectDetectionInputs) ProtoReflect() protoreflect.Message

func (*AutoMlImageObjectDetectionInputs) Reset

func (x *AutoMlImageObjectDetectionInputs) Reset()

func (*AutoMlImageObjectDetectionInputs) String

func (x *AutoMlImageObjectDetectionInputs) String() string

type AutoMlImageObjectDetectionInputs_ModelType

type AutoMlImageObjectDetectionInputs_ModelType int32
const (
    // Should not be set.
    AutoMlImageObjectDetectionInputs_MODEL_TYPE_UNSPECIFIED AutoMlImageObjectDetectionInputs_ModelType = 0
    // A model best tailored to be used within Google Cloud, and which cannot
    // be exported. Expected to have a higher latency, but should also have a
    // higher prediction quality than other cloud models.
    AutoMlImageObjectDetectionInputs_CLOUD_HIGH_ACCURACY_1 AutoMlImageObjectDetectionInputs_ModelType = 1
    // A model best tailored to be used within Google Cloud, and which cannot
    // be exported. Expected to have a low latency, but may have lower
    // prediction quality than other cloud models.
    AutoMlImageObjectDetectionInputs_CLOUD_LOW_LATENCY_1 AutoMlImageObjectDetectionInputs_ModelType = 2
    // A model that, in addition to being available within Google
    // Cloud can also be exported (see ModelService.ExportModel) and
    // used on a mobile or edge device with TensorFlow afterwards.
    // Expected to have low latency, but may have lower prediction
    // quality than other mobile models.
    AutoMlImageObjectDetectionInputs_MOBILE_TF_LOW_LATENCY_1 AutoMlImageObjectDetectionInputs_ModelType = 3
    // A model that, in addition to being available within Google
    // Cloud can also be exported (see ModelService.ExportModel) and
    // used on a mobile or edge device with TensorFlow afterwards.
    AutoMlImageObjectDetectionInputs_MOBILE_TF_VERSATILE_1 AutoMlImageObjectDetectionInputs_ModelType = 4
    // A model that, in addition to being available within Google
    // Cloud, can also be exported (see ModelService.ExportModel) and
    // used on a mobile or edge device with TensorFlow afterwards.
    // Expected to have a higher latency, but should also have a higher
    // prediction quality than other mobile models.
    AutoMlImageObjectDetectionInputs_MOBILE_TF_HIGH_ACCURACY_1 AutoMlImageObjectDetectionInputs_ModelType = 5
)

func (AutoMlImageObjectDetectionInputs_ModelType) Descriptor

func (AutoMlImageObjectDetectionInputs_ModelType) Descriptor() protoreflect.EnumDescriptor

func (AutoMlImageObjectDetectionInputs_ModelType) Enum

func (x AutoMlImageObjectDetectionInputs_ModelType) Enum() *AutoMlImageObjectDetectionInputs_ModelType

func (AutoMlImageObjectDetectionInputs_ModelType) EnumDescriptor

func (AutoMlImageObjectDetectionInputs_ModelType) EnumDescriptor() ([]byte, []int)

Deprecated: Use AutoMlImageObjectDetectionInputs_ModelType.Descriptor instead.

func (AutoMlImageObjectDetectionInputs_ModelType) Number

func (x AutoMlImageObjectDetectionInputs_ModelType) Number() protoreflect.EnumNumber

func (AutoMlImageObjectDetectionInputs_ModelType) String

func (x AutoMlImageObjectDetectionInputs_ModelType) String() string

func (AutoMlImageObjectDetectionInputs_ModelType) Type

func (AutoMlImageObjectDetectionInputs_ModelType) Type() protoreflect.EnumType

type AutoMlImageObjectDetectionMetadata

type AutoMlImageObjectDetectionMetadata struct {

    // The actual training cost of creating this model, expressed in
    // milli node hours, i.e. 1,000 value in this field means 1 node hour.
    // Guaranteed to not exceed inputs.budgetMilliNodeHours.
    CostMilliNodeHours int64 `protobuf:"varint,1,opt,name=cost_milli_node_hours,json=costMilliNodeHours,proto3" json:"cost_milli_node_hours,omitempty"`
    // For successful job completions, this is the reason why the job has
    // finished.
    SuccessfulStopReason AutoMlImageObjectDetectionMetadata_SuccessfulStopReason `protobuf:"varint,2,opt,name=successful_stop_reason,json=successfulStopReason,proto3,enum=google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageObjectDetectionMetadata_SuccessfulStopReason" json:"successful_stop_reason,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlImageObjectDetectionMetadata) Descriptor

func (*AutoMlImageObjectDetectionMetadata) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlImageObjectDetectionMetadata.ProtoReflect.Descriptor instead.

func (*AutoMlImageObjectDetectionMetadata) GetCostMilliNodeHours

func (x *AutoMlImageObjectDetectionMetadata) GetCostMilliNodeHours() int64

func (*AutoMlImageObjectDetectionMetadata) GetSuccessfulStopReason

func (x *AutoMlImageObjectDetectionMetadata) GetSuccessfulStopReason() AutoMlImageObjectDetectionMetadata_SuccessfulStopReason

func (*AutoMlImageObjectDetectionMetadata) ProtoMessage

func (*AutoMlImageObjectDetectionMetadata) ProtoMessage()

func (*AutoMlImageObjectDetectionMetadata) ProtoReflect

func (x *AutoMlImageObjectDetectionMetadata) ProtoReflect() protoreflect.Message

func (*AutoMlImageObjectDetectionMetadata) Reset

func (x *AutoMlImageObjectDetectionMetadata) Reset()

func (*AutoMlImageObjectDetectionMetadata) String

func (x *AutoMlImageObjectDetectionMetadata) String() string

type AutoMlImageObjectDetectionMetadata_SuccessfulStopReason

type AutoMlImageObjectDetectionMetadata_SuccessfulStopReason int32
const (
    // Should not be set.
    AutoMlImageObjectDetectionMetadata_SUCCESSFUL_STOP_REASON_UNSPECIFIED AutoMlImageObjectDetectionMetadata_SuccessfulStopReason = 0
    // The inputs.budgetMilliNodeHours had been reached.
    AutoMlImageObjectDetectionMetadata_BUDGET_REACHED AutoMlImageObjectDetectionMetadata_SuccessfulStopReason = 1
    // Further training of the Model ceased to increase its quality, since it
    // already has converged.
    AutoMlImageObjectDetectionMetadata_MODEL_CONVERGED AutoMlImageObjectDetectionMetadata_SuccessfulStopReason = 2
)

func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Descriptor

func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Descriptor() protoreflect.EnumDescriptor

func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Enum

func (x AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Enum() *AutoMlImageObjectDetectionMetadata_SuccessfulStopReason

func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) EnumDescriptor

func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) EnumDescriptor() ([]byte, []int)

Deprecated: Use AutoMlImageObjectDetectionMetadata_SuccessfulStopReason.Descriptor instead.

func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Number

func (x AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Number() protoreflect.EnumNumber

func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) String

func (x AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) String() string

func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Type

func (AutoMlImageObjectDetectionMetadata_SuccessfulStopReason) Type() protoreflect.EnumType

type AutoMlImageSegmentation

A TrainingJob that trains and uploads an AutoML Image Segmentation Model.

type AutoMlImageSegmentation struct {

    // The input parameters of this TrainingJob.
    Inputs *AutoMlImageSegmentationInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"`
    // The metadata information.
    Metadata *AutoMlImageSegmentationMetadata `protobuf:"bytes,2,opt,name=metadata,proto3" json:"metadata,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlImageSegmentation) Descriptor

func (*AutoMlImageSegmentation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlImageSegmentation.ProtoReflect.Descriptor instead.

func (*AutoMlImageSegmentation) GetInputs

func (x *AutoMlImageSegmentation) GetInputs() *AutoMlImageSegmentationInputs

func (*AutoMlImageSegmentation) GetMetadata

func (x *AutoMlImageSegmentation) GetMetadata() *AutoMlImageSegmentationMetadata

func (*AutoMlImageSegmentation) ProtoMessage

func (*AutoMlImageSegmentation) ProtoMessage()

func (*AutoMlImageSegmentation) ProtoReflect

func (x *AutoMlImageSegmentation) ProtoReflect() protoreflect.Message

func (*AutoMlImageSegmentation) Reset

func (x *AutoMlImageSegmentation) Reset()

func (*AutoMlImageSegmentation) String

func (x *AutoMlImageSegmentation) String() string

type AutoMlImageSegmentationInputs

type AutoMlImageSegmentationInputs struct {
    ModelType AutoMlImageSegmentationInputs_ModelType `protobuf:"varint,1,opt,name=model_type,json=modelType,proto3,enum=google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageSegmentationInputs_ModelType" json:"model_type,omitempty"`
    // The training budget of creating this model, expressed in milli node
    // hours i.e. 1,000 value in this field means 1 node hour. The actual
    // metadata.costMilliNodeHours will be equal or less than this value.
    // If further model training ceases to provide any improvements, it will
    // stop without using the full budget and the metadata.successfulStopReason
    // will be `model-converged`.
    // Note, node_hour  = actual_hour * number_of_nodes_involved. Or
    // actaul_wall_clock_hours = train_budget_milli_node_hours /
    //
    //	(number_of_nodes_involved * 1000)
    //
    // For modelType `cloud-high-accuracy-1`(default), the budget must be between
    // 20,000 and 2,000,000 milli node hours, inclusive. The default value is
    // 192,000 which represents one day in wall time
    // (1000 milli * 24 hours * 8 nodes).
    BudgetMilliNodeHours int64 `protobuf:"varint,2,opt,name=budget_milli_node_hours,json=budgetMilliNodeHours,proto3" json:"budget_milli_node_hours,omitempty"`
    // The ID of the `base` model. If it is specified, the new model will be
    // trained based on the `base` model. Otherwise, the new model will be
    // trained from scratch. The `base` model must be in the same
    // Project and Location as the new Model to train, and have the same
    // modelType.
    BaseModelId string `protobuf:"bytes,3,opt,name=base_model_id,json=baseModelId,proto3" json:"base_model_id,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlImageSegmentationInputs) Descriptor

func (*AutoMlImageSegmentationInputs) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlImageSegmentationInputs.ProtoReflect.Descriptor instead.

func (*AutoMlImageSegmentationInputs) GetBaseModelId

func (x *AutoMlImageSegmentationInputs) GetBaseModelId() string

func (*AutoMlImageSegmentationInputs) GetBudgetMilliNodeHours

func (x *AutoMlImageSegmentationInputs) GetBudgetMilliNodeHours() int64

func (*AutoMlImageSegmentationInputs) GetModelType

func (x *AutoMlImageSegmentationInputs) GetModelType() AutoMlImageSegmentationInputs_ModelType

func (*AutoMlImageSegmentationInputs) ProtoMessage

func (*AutoMlImageSegmentationInputs) ProtoMessage()

func (*AutoMlImageSegmentationInputs) ProtoReflect

func (x *AutoMlImageSegmentationInputs) ProtoReflect() protoreflect.Message

func (*AutoMlImageSegmentationInputs) Reset

func (x *AutoMlImageSegmentationInputs) Reset()

func (*AutoMlImageSegmentationInputs) String

func (x *AutoMlImageSegmentationInputs) String() string

type AutoMlImageSegmentationInputs_ModelType

type AutoMlImageSegmentationInputs_ModelType int32
const (
    // Should not be set.
    AutoMlImageSegmentationInputs_MODEL_TYPE_UNSPECIFIED AutoMlImageSegmentationInputs_ModelType = 0
    // A model to be used via prediction calls to uCAIP API. Expected
    // to have a higher latency, but should also have a higher prediction
    // quality than other models.
    AutoMlImageSegmentationInputs_CLOUD_HIGH_ACCURACY_1 AutoMlImageSegmentationInputs_ModelType = 1
    // A model to be used via prediction calls to uCAIP API. Expected
    // to have a lower latency but relatively lower prediction quality.
    AutoMlImageSegmentationInputs_CLOUD_LOW_ACCURACY_1 AutoMlImageSegmentationInputs_ModelType = 2
    // A model that, in addition to being available within Google
    // Cloud, can also be exported (see ModelService.ExportModel) as TensorFlow
    // model and used on a mobile or edge device afterwards.
    // Expected to have low latency, but may have lower prediction
    // quality than other mobile models.
    AutoMlImageSegmentationInputs_MOBILE_TF_LOW_LATENCY_1 AutoMlImageSegmentationInputs_ModelType = 3
)

func (AutoMlImageSegmentationInputs_ModelType) Descriptor

func (AutoMlImageSegmentationInputs_ModelType) Descriptor() protoreflect.EnumDescriptor

func (AutoMlImageSegmentationInputs_ModelType) Enum

func (x AutoMlImageSegmentationInputs_ModelType) Enum() *AutoMlImageSegmentationInputs_ModelType

func (AutoMlImageSegmentationInputs_ModelType) EnumDescriptor

func (AutoMlImageSegmentationInputs_ModelType) EnumDescriptor() ([]byte, []int)

Deprecated: Use AutoMlImageSegmentationInputs_ModelType.Descriptor instead.

func (AutoMlImageSegmentationInputs_ModelType) Number

func (x AutoMlImageSegmentationInputs_ModelType) Number() protoreflect.EnumNumber

func (AutoMlImageSegmentationInputs_ModelType) String

func (x AutoMlImageSegmentationInputs_ModelType) String() string

func (AutoMlImageSegmentationInputs_ModelType) Type

func (AutoMlImageSegmentationInputs_ModelType) Type() protoreflect.EnumType

type AutoMlImageSegmentationMetadata

type AutoMlImageSegmentationMetadata struct {

    // The actual training cost of creating this model, expressed in
    // milli node hours, i.e. 1,000 value in this field means 1 node hour.
    // Guaranteed to not exceed inputs.budgetMilliNodeHours.
    CostMilliNodeHours int64 `protobuf:"varint,1,opt,name=cost_milli_node_hours,json=costMilliNodeHours,proto3" json:"cost_milli_node_hours,omitempty"`
    // For successful job completions, this is the reason why the job has
    // finished.
    SuccessfulStopReason AutoMlImageSegmentationMetadata_SuccessfulStopReason `protobuf:"varint,2,opt,name=successful_stop_reason,json=successfulStopReason,proto3,enum=google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageSegmentationMetadata_SuccessfulStopReason" json:"successful_stop_reason,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlImageSegmentationMetadata) Descriptor

func (*AutoMlImageSegmentationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlImageSegmentationMetadata.ProtoReflect.Descriptor instead.

func (*AutoMlImageSegmentationMetadata) GetCostMilliNodeHours

func (x *AutoMlImageSegmentationMetadata) GetCostMilliNodeHours() int64

func (*AutoMlImageSegmentationMetadata) GetSuccessfulStopReason

func (x *AutoMlImageSegmentationMetadata) GetSuccessfulStopReason() AutoMlImageSegmentationMetadata_SuccessfulStopReason

func (*AutoMlImageSegmentationMetadata) ProtoMessage

func (*AutoMlImageSegmentationMetadata) ProtoMessage()

func (*AutoMlImageSegmentationMetadata) ProtoReflect

func (x *AutoMlImageSegmentationMetadata) ProtoReflect() protoreflect.Message

func (*AutoMlImageSegmentationMetadata) Reset

func (x *AutoMlImageSegmentationMetadata) Reset()

func (*AutoMlImageSegmentationMetadata) String

func (x *AutoMlImageSegmentationMetadata) String() string

type AutoMlImageSegmentationMetadata_SuccessfulStopReason

type AutoMlImageSegmentationMetadata_SuccessfulStopReason int32
const (
    // Should not be set.
    AutoMlImageSegmentationMetadata_SUCCESSFUL_STOP_REASON_UNSPECIFIED AutoMlImageSegmentationMetadata_SuccessfulStopReason = 0
    // The inputs.budgetMilliNodeHours had been reached.
    AutoMlImageSegmentationMetadata_BUDGET_REACHED AutoMlImageSegmentationMetadata_SuccessfulStopReason = 1
    // Further training of the Model ceased to increase its quality, since it
    // already has converged.
    AutoMlImageSegmentationMetadata_MODEL_CONVERGED AutoMlImageSegmentationMetadata_SuccessfulStopReason = 2
)

func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) Descriptor

func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) Descriptor() protoreflect.EnumDescriptor

func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) Enum

func (x AutoMlImageSegmentationMetadata_SuccessfulStopReason) Enum() *AutoMlImageSegmentationMetadata_SuccessfulStopReason

func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) EnumDescriptor

func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) EnumDescriptor() ([]byte, []int)

Deprecated: Use AutoMlImageSegmentationMetadata_SuccessfulStopReason.Descriptor instead.

func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) Number

func (x AutoMlImageSegmentationMetadata_SuccessfulStopReason) Number() protoreflect.EnumNumber

func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) String

func (x AutoMlImageSegmentationMetadata_SuccessfulStopReason) String() string

func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) Type

func (AutoMlImageSegmentationMetadata_SuccessfulStopReason) Type() protoreflect.EnumType

type AutoMlTables

A TrainingJob that trains and uploads an AutoML Tables Model.

type AutoMlTables struct {

    // The input parameters of this TrainingJob.
    Inputs *AutoMlTablesInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"`
    // The metadata information.
    Metadata *AutoMlTablesMetadata `protobuf:"bytes,2,opt,name=metadata,proto3" json:"metadata,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTables) Descriptor

func (*AutoMlTables) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTables.ProtoReflect.Descriptor instead.

func (*AutoMlTables) GetInputs

func (x *AutoMlTables) GetInputs() *AutoMlTablesInputs

func (*AutoMlTables) GetMetadata

func (x *AutoMlTables) GetMetadata() *AutoMlTablesMetadata

func (*AutoMlTables) ProtoMessage

func (*AutoMlTables) ProtoMessage()

func (*AutoMlTables) ProtoReflect

func (x *AutoMlTables) ProtoReflect() protoreflect.Message

func (*AutoMlTables) Reset

func (x *AutoMlTables) Reset()

func (*AutoMlTables) String

func (x *AutoMlTables) String() string

type AutoMlTablesInputs

type AutoMlTablesInputs struct {

    // Additional optimization objective configuration. Required for
    // `maximize-precision-at-recall` and `maximize-recall-at-precision`,
    // otherwise unused.
    //
    // Types that are assignable to AdditionalOptimizationObjectiveConfig:
    //
    //	*AutoMlTablesInputs_OptimizationObjectiveRecallValue
    //	*AutoMlTablesInputs_OptimizationObjectivePrecisionValue
    AdditionalOptimizationObjectiveConfig isAutoMlTablesInputs_AdditionalOptimizationObjectiveConfig `protobuf_oneof:"additional_optimization_objective_config"`
    // The type of prediction the Model is to produce.
    //
    //	"classification" - Predict one out of multiple target values is
    //	                   picked for each row.
    //	"regression" - Predict a value based on its relation to other values.
    //	               This type is available only to columns that contain
    //	               semantically numeric values, i.e. integers or floating
    //	               point number, even if stored as e.g. strings.
    PredictionType string `protobuf:"bytes,1,opt,name=prediction_type,json=predictionType,proto3" json:"prediction_type,omitempty"`
    // The column name of the target column that the model is to predict.
    TargetColumn string `protobuf:"bytes,2,opt,name=target_column,json=targetColumn,proto3" json:"target_column,omitempty"`
    // Each transformation will apply transform function to given input column.
    // And the result will be used for training.
    // When creating transformation for BigQuery Struct column, the column should
    // be flattened using "." as the delimiter.
    Transformations []*AutoMlTablesInputs_Transformation `protobuf:"bytes,3,rep,name=transformations,proto3" json:"transformations,omitempty"`
    // Objective function the model is optimizing towards. The training process
    // creates a model that maximizes/minimizes the value of the objective
    // function over the validation set.
    //
    // The supported optimization objectives depend on the prediction type.
    // If the field is not set, a default objective function is used.
    //
    // classification (binary):
    //
    //	"maximize-au-roc" (default) - Maximize the area under the receiver
    //	                              operating characteristic (ROC) curve.
    //	"minimize-log-loss" - Minimize log loss.
    //	"maximize-au-prc" - Maximize the area under the precision-recall curve.
    //	"maximize-precision-at-recall" - Maximize precision for a specified
    //	                                recall value.
    //	"maximize-recall-at-precision" - Maximize recall for a specified
    //	                                 precision value.
    //
    // classification (multi-class):
    //
    //	"minimize-log-loss" (default) - Minimize log loss.
    //
    // regression:
    //
    //	"minimize-rmse" (default) - Minimize root-mean-squared error (RMSE).
    //	"minimize-mae" - Minimize mean-absolute error (MAE).
    //	"minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
    OptimizationObjective string `protobuf:"bytes,4,opt,name=optimization_objective,json=optimizationObjective,proto3" json:"optimization_objective,omitempty"`
    // Required. The train budget of creating this model, expressed in milli node
    // hours i.e. 1,000 value in this field means 1 node hour.
    //
    // The training cost of the model will not exceed this budget. The final cost
    // will be attempted to be close to the budget, though may end up being (even)
    // noticeably smaller - at the backend's discretion. This especially may
    // happen when further model training ceases to provide any improvements.
    //
    // If the budget is set to a value known to be insufficient to train a
    // model for the given dataset, the training won't be attempted and
    // will error.
    //
    // The train budget must be between 1,000 and 72,000 milli node hours,
    // inclusive.
    TrainBudgetMilliNodeHours int64 `protobuf:"varint,7,opt,name=train_budget_milli_node_hours,json=trainBudgetMilliNodeHours,proto3" json:"train_budget_milli_node_hours,omitempty"`
    // Use the entire training budget. This disables the early stopping feature.
    // By default, the early stopping feature is enabled, which means that AutoML
    // Tables might stop training before the entire training budget has been used.
    DisableEarlyStopping bool `protobuf:"varint,8,opt,name=disable_early_stopping,json=disableEarlyStopping,proto3" json:"disable_early_stopping,omitempty"`
    // Column name that should be used as the weight column.
    // Higher values in this column give more importance to the row
    // during model training. The column must have numeric values between 0 and
    // 10000 inclusively; 0 means the row is ignored for training. If weight
    // column field is not set, then all rows are assumed to have equal weight
    // of 1.
    WeightColumnName string `protobuf:"bytes,9,opt,name=weight_column_name,json=weightColumnName,proto3" json:"weight_column_name,omitempty"`
    // Configuration for exporting test set predictions to a BigQuery table. If
    // this configuration is absent, then the export is not performed.
    ExportEvaluatedDataItemsConfig *ExportEvaluatedDataItemsConfig `protobuf:"bytes,10,opt,name=export_evaluated_data_items_config,json=exportEvaluatedDataItemsConfig,proto3" json:"export_evaluated_data_items_config,omitempty"`
    // Additional experiment flags for the Tables training pipeline.
    AdditionalExperiments []string `protobuf:"bytes,11,rep,name=additional_experiments,json=additionalExperiments,proto3" json:"additional_experiments,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTablesInputs) Descriptor

func (*AutoMlTablesInputs) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTablesInputs.ProtoReflect.Descriptor instead.

func (*AutoMlTablesInputs) GetAdditionalExperiments

func (x *AutoMlTablesInputs) GetAdditionalExperiments() []string

func (*AutoMlTablesInputs) GetAdditionalOptimizationObjectiveConfig

func (m *AutoMlTablesInputs) GetAdditionalOptimizationObjectiveConfig() isAutoMlTablesInputs_AdditionalOptimizationObjectiveConfig

func (*AutoMlTablesInputs) GetDisableEarlyStopping

func (x *AutoMlTablesInputs) GetDisableEarlyStopping() bool

func (*AutoMlTablesInputs) GetExportEvaluatedDataItemsConfig

func (x *AutoMlTablesInputs) GetExportEvaluatedDataItemsConfig() *ExportEvaluatedDataItemsConfig

func (*AutoMlTablesInputs) GetOptimizationObjective

func (x *AutoMlTablesInputs) GetOptimizationObjective() string

func (*AutoMlTablesInputs) GetOptimizationObjectivePrecisionValue

func (x *AutoMlTablesInputs) GetOptimizationObjectivePrecisionValue() float32

func (*AutoMlTablesInputs) GetOptimizationObjectiveRecallValue

func (x *AutoMlTablesInputs) GetOptimizationObjectiveRecallValue() float32

func (*AutoMlTablesInputs) GetPredictionType

func (x *AutoMlTablesInputs) GetPredictionType() string

func (*AutoMlTablesInputs) GetTargetColumn

func (x *AutoMlTablesInputs) GetTargetColumn() string

func (*AutoMlTablesInputs) GetTrainBudgetMilliNodeHours

func (x *AutoMlTablesInputs) GetTrainBudgetMilliNodeHours() int64

func (*AutoMlTablesInputs) GetTransformations

func (x *AutoMlTablesInputs) GetTransformations() []*AutoMlTablesInputs_Transformation

func (*AutoMlTablesInputs) GetWeightColumnName

func (x *AutoMlTablesInputs) GetWeightColumnName() string

func (*AutoMlTablesInputs) ProtoMessage

func (*AutoMlTablesInputs) ProtoMessage()

func (*AutoMlTablesInputs) ProtoReflect

func (x *AutoMlTablesInputs) ProtoReflect() protoreflect.Message

func (*AutoMlTablesInputs) Reset

func (x *AutoMlTablesInputs) Reset()

func (*AutoMlTablesInputs) String

func (x *AutoMlTablesInputs) String() string

type AutoMlTablesInputs_OptimizationObjectivePrecisionValue

type AutoMlTablesInputs_OptimizationObjectivePrecisionValue struct {
    // Required when optimization_objective is "maximize-recall-at-precision".
    // Must be between 0 and 1, inclusive.
    OptimizationObjectivePrecisionValue float32 `protobuf:"fixed32,6,opt,name=optimization_objective_precision_value,json=optimizationObjectivePrecisionValue,proto3,oneof"`
}

type AutoMlTablesInputs_OptimizationObjectiveRecallValue

type AutoMlTablesInputs_OptimizationObjectiveRecallValue struct {
    // Required when optimization_objective is "maximize-precision-at-recall".
    // Must be between 0 and 1, inclusive.
    OptimizationObjectiveRecallValue float32 `protobuf:"fixed32,5,opt,name=optimization_objective_recall_value,json=optimizationObjectiveRecallValue,proto3,oneof"`
}

type AutoMlTablesInputs_Transformation

type AutoMlTablesInputs_Transformation struct {

    // The transformation that the training pipeline will apply to the input
    // columns.
    //
    // Types that are assignable to TransformationDetail:
    //
    //	*AutoMlTablesInputs_Transformation_Auto
    //	*AutoMlTablesInputs_Transformation_Numeric
    //	*AutoMlTablesInputs_Transformation_Categorical
    //	*AutoMlTablesInputs_Transformation_Timestamp
    //	*AutoMlTablesInputs_Transformation_Text
    //	*AutoMlTablesInputs_Transformation_RepeatedNumeric
    //	*AutoMlTablesInputs_Transformation_RepeatedCategorical
    //	*AutoMlTablesInputs_Transformation_RepeatedText
    TransformationDetail isAutoMlTablesInputs_Transformation_TransformationDetail `protobuf_oneof:"transformation_detail"`
    // contains filtered or unexported fields
}

func (*AutoMlTablesInputs_Transformation) Descriptor

func (*AutoMlTablesInputs_Transformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTablesInputs_Transformation.ProtoReflect.Descriptor instead.

func (*AutoMlTablesInputs_Transformation) GetAuto

func (x *AutoMlTablesInputs_Transformation) GetAuto() *AutoMlTablesInputs_Transformation_AutoTransformation

func (*AutoMlTablesInputs_Transformation) GetCategorical

func (x *AutoMlTablesInputs_Transformation) GetCategorical() *AutoMlTablesInputs_Transformation_CategoricalTransformation

func (*AutoMlTablesInputs_Transformation) GetNumeric

func (x *AutoMlTablesInputs_Transformation) GetNumeric() *AutoMlTablesInputs_Transformation_NumericTransformation

func (*AutoMlTablesInputs_Transformation) GetRepeatedCategorical

func (x *AutoMlTablesInputs_Transformation) GetRepeatedCategorical() *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation

func (*AutoMlTablesInputs_Transformation) GetRepeatedNumeric

func (x *AutoMlTablesInputs_Transformation) GetRepeatedNumeric() *AutoMlTablesInputs_Transformation_NumericArrayTransformation

func (*AutoMlTablesInputs_Transformation) GetRepeatedText

func (x *AutoMlTablesInputs_Transformation) GetRepeatedText() *AutoMlTablesInputs_Transformation_TextArrayTransformation

func (*AutoMlTablesInputs_Transformation) GetText

func (x *AutoMlTablesInputs_Transformation) GetText() *AutoMlTablesInputs_Transformation_TextTransformation

func (*AutoMlTablesInputs_Transformation) GetTimestamp

func (x *AutoMlTablesInputs_Transformation) GetTimestamp() *AutoMlTablesInputs_Transformation_TimestampTransformation

func (*AutoMlTablesInputs_Transformation) GetTransformationDetail

func (m *AutoMlTablesInputs_Transformation) GetTransformationDetail() isAutoMlTablesInputs_Transformation_TransformationDetail

func (*AutoMlTablesInputs_Transformation) ProtoMessage

func (*AutoMlTablesInputs_Transformation) ProtoMessage()

func (*AutoMlTablesInputs_Transformation) ProtoReflect

func (x *AutoMlTablesInputs_Transformation) ProtoReflect() protoreflect.Message

func (*AutoMlTablesInputs_Transformation) Reset

func (x *AutoMlTablesInputs_Transformation) Reset()

func (*AutoMlTablesInputs_Transformation) String

func (x *AutoMlTablesInputs_Transformation) String() string

type AutoMlTablesInputs_Transformation_Auto

type AutoMlTablesInputs_Transformation_Auto struct {
    Auto *AutoMlTablesInputs_Transformation_AutoTransformation `protobuf:"bytes,1,opt,name=auto,proto3,oneof"`
}

type AutoMlTablesInputs_Transformation_AutoTransformation

Training pipeline will infer the proper transformation based on the statistic of dataset.

type AutoMlTablesInputs_Transformation_AutoTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTablesInputs_Transformation_AutoTransformation) Descriptor

func (*AutoMlTablesInputs_Transformation_AutoTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTablesInputs_Transformation_AutoTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlTablesInputs_Transformation_AutoTransformation) GetColumnName

func (x *AutoMlTablesInputs_Transformation_AutoTransformation) GetColumnName() string

func (*AutoMlTablesInputs_Transformation_AutoTransformation) ProtoMessage

func (*AutoMlTablesInputs_Transformation_AutoTransformation) ProtoMessage()

func (*AutoMlTablesInputs_Transformation_AutoTransformation) ProtoReflect

func (x *AutoMlTablesInputs_Transformation_AutoTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlTablesInputs_Transformation_AutoTransformation) Reset

func (x *AutoMlTablesInputs_Transformation_AutoTransformation) Reset()

func (*AutoMlTablesInputs_Transformation_AutoTransformation) String

func (x *AutoMlTablesInputs_Transformation_AutoTransformation) String() string

type AutoMlTablesInputs_Transformation_Categorical

type AutoMlTablesInputs_Transformation_Categorical struct {
    Categorical *AutoMlTablesInputs_Transformation_CategoricalTransformation `protobuf:"bytes,3,opt,name=categorical,proto3,oneof"`
}

type AutoMlTablesInputs_Transformation_CategoricalArrayTransformation

Treats the column as categorical array and performs following transformation functions. * For each element in the array, convert the category name to a dictionary

lookup index and generate an embedding for each index.
Combine the embedding of all elements into a single embedding using
the mean.

* Empty arrays treated as an embedding of zeroes.

type AutoMlTablesInputs_Transformation_CategoricalArrayTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) Descriptor

func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTablesInputs_Transformation_CategoricalArrayTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) GetColumnName

func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) GetColumnName() string

func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) ProtoMessage

func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) ProtoMessage()

func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) ProtoReflect

func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) Reset

func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) Reset()

func (*AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) String

func (x *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation) String() string

type AutoMlTablesInputs_Transformation_CategoricalTransformation

Training pipeline will perform following transformation functions. * The categorical string as is--no change to case, punctuation, spelling,

	tense, and so on.
  - Convert the category name to a dictionary lookup index and generate an
    embedding for each index.
  - Categories that appear less than 5 times in the training dataset are
    treated as the "unknown" category. The "unknown" category gets its own
    special lookup index and resulting embedding.
type AutoMlTablesInputs_Transformation_CategoricalTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) Descriptor

func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTablesInputs_Transformation_CategoricalTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) GetColumnName

func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) GetColumnName() string

func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) ProtoMessage

func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) ProtoMessage()

func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) ProtoReflect

func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) Reset

func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) Reset()

func (*AutoMlTablesInputs_Transformation_CategoricalTransformation) String

func (x *AutoMlTablesInputs_Transformation_CategoricalTransformation) String() string

type AutoMlTablesInputs_Transformation_Numeric

type AutoMlTablesInputs_Transformation_Numeric struct {
    Numeric *AutoMlTablesInputs_Transformation_NumericTransformation `protobuf:"bytes,2,opt,name=numeric,proto3,oneof"`
}

type AutoMlTablesInputs_Transformation_NumericArrayTransformation

Treats the column as numerical array and performs following transformation functions.

type AutoMlTablesInputs_Transformation_NumericArrayTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // If invalid values is allowed, the training pipeline will create a
    // boolean feature that indicated whether the value is valid.
    // Otherwise, the training pipeline will discard the input row from
    // trainining data.
    InvalidValuesAllowed bool `protobuf:"varint,2,opt,name=invalid_values_allowed,json=invalidValuesAllowed,proto3" json:"invalid_values_allowed,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) Descriptor

func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTablesInputs_Transformation_NumericArrayTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) GetColumnName

func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) GetColumnName() string

func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) GetInvalidValuesAllowed

func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) GetInvalidValuesAllowed() bool

func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) ProtoMessage

func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) ProtoMessage()

func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) ProtoReflect

func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) Reset

func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) Reset()

func (*AutoMlTablesInputs_Transformation_NumericArrayTransformation) String

func (x *AutoMlTablesInputs_Transformation_NumericArrayTransformation) String() string

type AutoMlTablesInputs_Transformation_NumericTransformation

Training pipeline will perform following transformation functions.

type AutoMlTablesInputs_Transformation_NumericTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // If invalid values is allowed, the training pipeline will create a
    // boolean feature that indicated whether the value is valid.
    // Otherwise, the training pipeline will discard the input row from
    // trainining data.
    InvalidValuesAllowed bool `protobuf:"varint,2,opt,name=invalid_values_allowed,json=invalidValuesAllowed,proto3" json:"invalid_values_allowed,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTablesInputs_Transformation_NumericTransformation) Descriptor

func (*AutoMlTablesInputs_Transformation_NumericTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTablesInputs_Transformation_NumericTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlTablesInputs_Transformation_NumericTransformation) GetColumnName

func (x *AutoMlTablesInputs_Transformation_NumericTransformation) GetColumnName() string

func (*AutoMlTablesInputs_Transformation_NumericTransformation) GetInvalidValuesAllowed

func (x *AutoMlTablesInputs_Transformation_NumericTransformation) GetInvalidValuesAllowed() bool

func (*AutoMlTablesInputs_Transformation_NumericTransformation) ProtoMessage

func (*AutoMlTablesInputs_Transformation_NumericTransformation) ProtoMessage()

func (*AutoMlTablesInputs_Transformation_NumericTransformation) ProtoReflect

func (x *AutoMlTablesInputs_Transformation_NumericTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlTablesInputs_Transformation_NumericTransformation) Reset

func (x *AutoMlTablesInputs_Transformation_NumericTransformation) Reset()

func (*AutoMlTablesInputs_Transformation_NumericTransformation) String

func (x *AutoMlTablesInputs_Transformation_NumericTransformation) String() string

type AutoMlTablesInputs_Transformation_RepeatedCategorical

type AutoMlTablesInputs_Transformation_RepeatedCategorical struct {
    RepeatedCategorical *AutoMlTablesInputs_Transformation_CategoricalArrayTransformation `protobuf:"bytes,7,opt,name=repeated_categorical,json=repeatedCategorical,proto3,oneof"`
}

type AutoMlTablesInputs_Transformation_RepeatedNumeric

type AutoMlTablesInputs_Transformation_RepeatedNumeric struct {
    RepeatedNumeric *AutoMlTablesInputs_Transformation_NumericArrayTransformation `protobuf:"bytes,6,opt,name=repeated_numeric,json=repeatedNumeric,proto3,oneof"`
}

type AutoMlTablesInputs_Transformation_RepeatedText

type AutoMlTablesInputs_Transformation_RepeatedText struct {
    RepeatedText *AutoMlTablesInputs_Transformation_TextArrayTransformation `protobuf:"bytes,8,opt,name=repeated_text,json=repeatedText,proto3,oneof"`
}

type AutoMlTablesInputs_Transformation_Text

type AutoMlTablesInputs_Transformation_Text struct {
    Text *AutoMlTablesInputs_Transformation_TextTransformation `protobuf:"bytes,5,opt,name=text,proto3,oneof"`
}

type AutoMlTablesInputs_Transformation_TextArrayTransformation

Treats the column as text array and performs following transformation functions. * Concatenate all text values in the array into a single text value using

a space (" ") as a delimiter, and then treat the result as a single
text value. Apply the transformations for Text columns.

* Empty arrays treated as an empty text.

type AutoMlTablesInputs_Transformation_TextArrayTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) Descriptor

func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTablesInputs_Transformation_TextArrayTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) GetColumnName

func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) GetColumnName() string

func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) ProtoMessage

func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) ProtoMessage()

func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) ProtoReflect

func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) Reset

func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) Reset()

func (*AutoMlTablesInputs_Transformation_TextArrayTransformation) String

func (x *AutoMlTablesInputs_Transformation_TextArrayTransformation) String() string

type AutoMlTablesInputs_Transformation_TextTransformation

Training pipeline will perform following transformation functions. * The text as is--no change to case, punctuation, spelling, tense, and so

on.

* Tokenize text to words. Convert each words to a dictionary lookup index

and generate an embedding for each index. Combine the embedding of all
elements into a single embedding using the mean.

* Tokenization is based on unicode script boundaries. * Missing values get their own lookup index and resulting embedding. * Stop-words receive no special treatment and are not removed.

type AutoMlTablesInputs_Transformation_TextTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTablesInputs_Transformation_TextTransformation) Descriptor

func (*AutoMlTablesInputs_Transformation_TextTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTablesInputs_Transformation_TextTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlTablesInputs_Transformation_TextTransformation) GetColumnName

func (x *AutoMlTablesInputs_Transformation_TextTransformation) GetColumnName() string

func (*AutoMlTablesInputs_Transformation_TextTransformation) ProtoMessage

func (*AutoMlTablesInputs_Transformation_TextTransformation) ProtoMessage()

func (*AutoMlTablesInputs_Transformation_TextTransformation) ProtoReflect

func (x *AutoMlTablesInputs_Transformation_TextTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlTablesInputs_Transformation_TextTransformation) Reset

func (x *AutoMlTablesInputs_Transformation_TextTransformation) Reset()

func (*AutoMlTablesInputs_Transformation_TextTransformation) String

func (x *AutoMlTablesInputs_Transformation_TextTransformation) String() string

type AutoMlTablesInputs_Transformation_Timestamp

type AutoMlTablesInputs_Transformation_Timestamp struct {
    Timestamp *AutoMlTablesInputs_Transformation_TimestampTransformation `protobuf:"bytes,4,opt,name=timestamp,proto3,oneof"`
}

type AutoMlTablesInputs_Transformation_TimestampTransformation

Training pipeline will perform following transformation functions.

type AutoMlTablesInputs_Transformation_TimestampTransformation struct {
    ColumnName string `protobuf:"bytes,1,opt,name=column_name,json=columnName,proto3" json:"column_name,omitempty"`
    // The format in which that time field is expressed. The time_format must
    // either be one of:
    // * `unix-seconds`
    // * `unix-milliseconds`
    // * `unix-microseconds`
    // * `unix-nanoseconds`
    // (for respectively number of seconds, milliseconds, microseconds and
    // nanoseconds since start of the Unix epoch);
    // or be written in `strftime` syntax. If time_format is not set, then the
    // default format is RFC 3339 `date-time` format, where
    // `time-offset` = `"Z"` (e.g. 1985-04-12T23:20:50.52Z)
    TimeFormat string `protobuf:"bytes,2,opt,name=time_format,json=timeFormat,proto3" json:"time_format,omitempty"`
    // If invalid values is allowed, the training pipeline will create a
    // boolean feature that indicated whether the value is valid.
    // Otherwise, the training pipeline will discard the input row from
    // trainining data.
    InvalidValuesAllowed bool `protobuf:"varint,3,opt,name=invalid_values_allowed,json=invalidValuesAllowed,proto3" json:"invalid_values_allowed,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTablesInputs_Transformation_TimestampTransformation) Descriptor

func (*AutoMlTablesInputs_Transformation_TimestampTransformation) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTablesInputs_Transformation_TimestampTransformation.ProtoReflect.Descriptor instead.

func (*AutoMlTablesInputs_Transformation_TimestampTransformation) GetColumnName

func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) GetColumnName() string

func (*AutoMlTablesInputs_Transformation_TimestampTransformation) GetInvalidValuesAllowed

func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) GetInvalidValuesAllowed() bool

func (*AutoMlTablesInputs_Transformation_TimestampTransformation) GetTimeFormat

func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) GetTimeFormat() string

func (*AutoMlTablesInputs_Transformation_TimestampTransformation) ProtoMessage

func (*AutoMlTablesInputs_Transformation_TimestampTransformation) ProtoMessage()

func (*AutoMlTablesInputs_Transformation_TimestampTransformation) ProtoReflect

func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) ProtoReflect() protoreflect.Message

func (*AutoMlTablesInputs_Transformation_TimestampTransformation) Reset

func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) Reset()

func (*AutoMlTablesInputs_Transformation_TimestampTransformation) String

func (x *AutoMlTablesInputs_Transformation_TimestampTransformation) String() string

type AutoMlTablesMetadata

Model metadata specific to AutoML Tables.

type AutoMlTablesMetadata struct {

    // Output only. The actual training cost of the model, expressed in milli
    // node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
    // to not exceed the train budget.
    TrainCostMilliNodeHours int64 `protobuf:"varint,1,opt,name=train_cost_milli_node_hours,json=trainCostMilliNodeHours,proto3" json:"train_cost_milli_node_hours,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTablesMetadata) Descriptor

func (*AutoMlTablesMetadata) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTablesMetadata.ProtoReflect.Descriptor instead.

func (*AutoMlTablesMetadata) GetTrainCostMilliNodeHours

func (x *AutoMlTablesMetadata) GetTrainCostMilliNodeHours() int64

func (*AutoMlTablesMetadata) ProtoMessage

func (*AutoMlTablesMetadata) ProtoMessage()

func (*AutoMlTablesMetadata) ProtoReflect

func (x *AutoMlTablesMetadata) ProtoReflect() protoreflect.Message

func (*AutoMlTablesMetadata) Reset

func (x *AutoMlTablesMetadata) Reset()

func (*AutoMlTablesMetadata) String

func (x *AutoMlTablesMetadata) String() string

type AutoMlTextClassification

A TrainingJob that trains and uploads an AutoML Text Classification Model.

type AutoMlTextClassification struct {

    // The input parameters of this TrainingJob.
    Inputs *AutoMlTextClassificationInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTextClassification) Descriptor

func (*AutoMlTextClassification) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTextClassification.ProtoReflect.Descriptor instead.

func (*AutoMlTextClassification) GetInputs

func (x *AutoMlTextClassification) GetInputs() *AutoMlTextClassificationInputs

func (*AutoMlTextClassification) ProtoMessage

func (*AutoMlTextClassification) ProtoMessage()

func (*AutoMlTextClassification) ProtoReflect

func (x *AutoMlTextClassification) ProtoReflect() protoreflect.Message

func (*AutoMlTextClassification) Reset

func (x *AutoMlTextClassification) Reset()

func (*AutoMlTextClassification) String

func (x *AutoMlTextClassification) String() string

type AutoMlTextClassificationInputs

type AutoMlTextClassificationInputs struct {
    MultiLabel bool `protobuf:"varint,1,opt,name=multi_label,json=multiLabel,proto3" json:"multi_label,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTextClassificationInputs) Descriptor

func (*AutoMlTextClassificationInputs) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTextClassificationInputs.ProtoReflect.Descriptor instead.

func (*AutoMlTextClassificationInputs) GetMultiLabel

func (x *AutoMlTextClassificationInputs) GetMultiLabel() bool

func (*AutoMlTextClassificationInputs) ProtoMessage

func (*AutoMlTextClassificationInputs) ProtoMessage()

func (*AutoMlTextClassificationInputs) ProtoReflect

func (x *AutoMlTextClassificationInputs) ProtoReflect() protoreflect.Message

func (*AutoMlTextClassificationInputs) Reset

func (x *AutoMlTextClassificationInputs) Reset()

func (*AutoMlTextClassificationInputs) String

func (x *AutoMlTextClassificationInputs) String() string

type AutoMlTextExtraction

A TrainingJob that trains and uploads an AutoML Text Extraction Model.

type AutoMlTextExtraction struct {

    // The input parameters of this TrainingJob.
    Inputs *AutoMlTextExtractionInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTextExtraction) Descriptor

func (*AutoMlTextExtraction) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTextExtraction.ProtoReflect.Descriptor instead.

func (*AutoMlTextExtraction) GetInputs

func (x *AutoMlTextExtraction) GetInputs() *AutoMlTextExtractionInputs

func (*AutoMlTextExtraction) ProtoMessage

func (*AutoMlTextExtraction) ProtoMessage()

func (*AutoMlTextExtraction) ProtoReflect

func (x *AutoMlTextExtraction) ProtoReflect() protoreflect.Message

func (*AutoMlTextExtraction) Reset

func (x *AutoMlTextExtraction) Reset()

func (*AutoMlTextExtraction) String

func (x *AutoMlTextExtraction) String() string

type AutoMlTextExtractionInputs

type AutoMlTextExtractionInputs struct {
    // contains filtered or unexported fields
}

func (*AutoMlTextExtractionInputs) Descriptor

func (*AutoMlTextExtractionInputs) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTextExtractionInputs.ProtoReflect.Descriptor instead.

func (*AutoMlTextExtractionInputs) ProtoMessage

func (*AutoMlTextExtractionInputs) ProtoMessage()

func (*AutoMlTextExtractionInputs) ProtoReflect

func (x *AutoMlTextExtractionInputs) ProtoReflect() protoreflect.Message

func (*AutoMlTextExtractionInputs) Reset

func (x *AutoMlTextExtractionInputs) Reset()

func (*AutoMlTextExtractionInputs) String

func (x *AutoMlTextExtractionInputs) String() string

type AutoMlTextSentiment

A TrainingJob that trains and uploads an AutoML Text Sentiment Model.

type AutoMlTextSentiment struct {

    // The input parameters of this TrainingJob.
    Inputs *AutoMlTextSentimentInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTextSentiment) Descriptor

func (*AutoMlTextSentiment) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTextSentiment.ProtoReflect.Descriptor instead.

func (*AutoMlTextSentiment) GetInputs

func (x *AutoMlTextSentiment) GetInputs() *AutoMlTextSentimentInputs

func (*AutoMlTextSentiment) ProtoMessage

func (*AutoMlTextSentiment) ProtoMessage()

func (*AutoMlTextSentiment) ProtoReflect

func (x *AutoMlTextSentiment) ProtoReflect() protoreflect.Message

func (*AutoMlTextSentiment) Reset

func (x *AutoMlTextSentiment) Reset()

func (*AutoMlTextSentiment) String

func (x *AutoMlTextSentiment) String() string

type AutoMlTextSentimentInputs

type AutoMlTextSentimentInputs struct {

    // A sentiment is expressed as an integer ordinal, where higher value
    // means a more positive sentiment. The range of sentiments that will be used
    // is between 0 and sentimentMax (inclusive on both ends), and all the values
    // in the range must be represented in the dataset before a model can be
    // created.
    // Only the Annotations with this sentimentMax will be used for training.
    // sentimentMax value must be between 1 and 10 (inclusive).
    SentimentMax int32 `protobuf:"varint,1,opt,name=sentiment_max,json=sentimentMax,proto3" json:"sentiment_max,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlTextSentimentInputs) Descriptor

func (*AutoMlTextSentimentInputs) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlTextSentimentInputs.ProtoReflect.Descriptor instead.

func (*AutoMlTextSentimentInputs) GetSentimentMax

func (x *AutoMlTextSentimentInputs) GetSentimentMax() int32

func (*AutoMlTextSentimentInputs) ProtoMessage

func (*AutoMlTextSentimentInputs) ProtoMessage()

func (*AutoMlTextSentimentInputs) ProtoReflect

func (x *AutoMlTextSentimentInputs) ProtoReflect() protoreflect.Message

func (*AutoMlTextSentimentInputs) Reset

func (x *AutoMlTextSentimentInputs) Reset()

func (*AutoMlTextSentimentInputs) String

func (x *AutoMlTextSentimentInputs) String() string

type AutoMlVideoActionRecognition

A TrainingJob that trains and uploads an AutoML Video Action Recognition Model.

type AutoMlVideoActionRecognition struct {

    // The input parameters of this TrainingJob.
    Inputs *AutoMlVideoActionRecognitionInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlVideoActionRecognition) Descriptor

func (*AutoMlVideoActionRecognition) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlVideoActionRecognition.ProtoReflect.Descriptor instead.

func (*AutoMlVideoActionRecognition) GetInputs

func (x *AutoMlVideoActionRecognition) GetInputs() *AutoMlVideoActionRecognitionInputs

func (*AutoMlVideoActionRecognition) ProtoMessage

func (*AutoMlVideoActionRecognition) ProtoMessage()

func (*AutoMlVideoActionRecognition) ProtoReflect

func (x *AutoMlVideoActionRecognition) ProtoReflect() protoreflect.Message

func (*AutoMlVideoActionRecognition) Reset

func (x *AutoMlVideoActionRecognition) Reset()

func (*AutoMlVideoActionRecognition) String

func (x *AutoMlVideoActionRecognition) String() string

type AutoMlVideoActionRecognitionInputs

type AutoMlVideoActionRecognitionInputs struct {
    ModelType AutoMlVideoActionRecognitionInputs_ModelType `protobuf:"varint,1,opt,name=model_type,json=modelType,proto3,enum=google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlVideoActionRecognitionInputs_ModelType" json:"model_type,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlVideoActionRecognitionInputs) Descriptor

func (*AutoMlVideoActionRecognitionInputs) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlVideoActionRecognitionInputs.ProtoReflect.Descriptor instead.

func (*AutoMlVideoActionRecognitionInputs) GetModelType

func (x *AutoMlVideoActionRecognitionInputs) GetModelType() AutoMlVideoActionRecognitionInputs_ModelType

func (*AutoMlVideoActionRecognitionInputs) ProtoMessage

func (*AutoMlVideoActionRecognitionInputs) ProtoMessage()

func (*AutoMlVideoActionRecognitionInputs) ProtoReflect

func (x *AutoMlVideoActionRecognitionInputs) ProtoReflect() protoreflect.Message

func (*AutoMlVideoActionRecognitionInputs) Reset

func (x *AutoMlVideoActionRecognitionInputs) Reset()

func (*AutoMlVideoActionRecognitionInputs) String

func (x *AutoMlVideoActionRecognitionInputs) String() string

type AutoMlVideoActionRecognitionInputs_ModelType

type AutoMlVideoActionRecognitionInputs_ModelType int32
const (
    // Should not be set.
    AutoMlVideoActionRecognitionInputs_MODEL_TYPE_UNSPECIFIED AutoMlVideoActionRecognitionInputs_ModelType = 0
    // A model best tailored to be used within Google Cloud, and which c annot
    // be exported. Default.
    AutoMlVideoActionRecognitionInputs_CLOUD AutoMlVideoActionRecognitionInputs_ModelType = 1
    // A model that, in addition to being available within Google Cloud, can
    // also be exported (see ModelService.ExportModel) as a TensorFlow or
    // TensorFlow Lite model and used on a mobile or edge device afterwards.
    AutoMlVideoActionRecognitionInputs_MOBILE_VERSATILE_1 AutoMlVideoActionRecognitionInputs_ModelType = 2
    // A model that, in addition to being available within Google Cloud, can
    // also be exported (see ModelService.ExportModel) to a Jetson device
    // afterwards.
    AutoMlVideoActionRecognitionInputs_MOBILE_JETSON_VERSATILE_1 AutoMlVideoActionRecognitionInputs_ModelType = 3
    // A model that, in addition to being available within Google Cloud, can
    // also be exported (see ModelService.ExportModel) as a TensorFlow or
    // TensorFlow Lite model and used on a Coral device afterwards.
    AutoMlVideoActionRecognitionInputs_MOBILE_CORAL_VERSATILE_1 AutoMlVideoActionRecognitionInputs_ModelType = 4
)

func (AutoMlVideoActionRecognitionInputs_ModelType) Descriptor

func (AutoMlVideoActionRecognitionInputs_ModelType) Descriptor() protoreflect.EnumDescriptor

func (AutoMlVideoActionRecognitionInputs_ModelType) Enum

func (x AutoMlVideoActionRecognitionInputs_ModelType) Enum() *AutoMlVideoActionRecognitionInputs_ModelType

func (AutoMlVideoActionRecognitionInputs_ModelType) EnumDescriptor

func (AutoMlVideoActionRecognitionInputs_ModelType) EnumDescriptor() ([]byte, []int)

Deprecated: Use AutoMlVideoActionRecognitionInputs_ModelType.Descriptor instead.

func (AutoMlVideoActionRecognitionInputs_ModelType) Number

func (x AutoMlVideoActionRecognitionInputs_ModelType) Number() protoreflect.EnumNumber

func (AutoMlVideoActionRecognitionInputs_ModelType) String

func (x AutoMlVideoActionRecognitionInputs_ModelType) String() string

func (AutoMlVideoActionRecognitionInputs_ModelType) Type

func (AutoMlVideoActionRecognitionInputs_ModelType) Type() protoreflect.EnumType

type AutoMlVideoClassification

A TrainingJob that trains and uploads an AutoML Video Classification Model.

type AutoMlVideoClassification struct {

    // The input parameters of this TrainingJob.
    Inputs *AutoMlVideoClassificationInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlVideoClassification) Descriptor

func (*AutoMlVideoClassification) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlVideoClassification.ProtoReflect.Descriptor instead.

func (*AutoMlVideoClassification) GetInputs

func (x *AutoMlVideoClassification) GetInputs() *AutoMlVideoClassificationInputs

func (*AutoMlVideoClassification) ProtoMessage

func (*AutoMlVideoClassification) ProtoMessage()

func (*AutoMlVideoClassification) ProtoReflect

func (x *AutoMlVideoClassification) ProtoReflect() protoreflect.Message

func (*AutoMlVideoClassification) Reset

func (x *AutoMlVideoClassification) Reset()

func (*AutoMlVideoClassification) String

func (x *AutoMlVideoClassification) String() string

type AutoMlVideoClassificationInputs

type AutoMlVideoClassificationInputs struct {
    ModelType AutoMlVideoClassificationInputs_ModelType `protobuf:"varint,1,opt,name=model_type,json=modelType,proto3,enum=google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlVideoClassificationInputs_ModelType" json:"model_type,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlVideoClassificationInputs) Descriptor

func (*AutoMlVideoClassificationInputs) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlVideoClassificationInputs.ProtoReflect.Descriptor instead.

func (*AutoMlVideoClassificationInputs) GetModelType

func (x *AutoMlVideoClassificationInputs) GetModelType() AutoMlVideoClassificationInputs_ModelType

func (*AutoMlVideoClassificationInputs) ProtoMessage

func (*AutoMlVideoClassificationInputs) ProtoMessage()

func (*AutoMlVideoClassificationInputs) ProtoReflect

func (x *AutoMlVideoClassificationInputs) ProtoReflect() protoreflect.Message

func (*AutoMlVideoClassificationInputs) Reset

func (x *AutoMlVideoClassificationInputs) Reset()

func (*AutoMlVideoClassificationInputs) String

func (x *AutoMlVideoClassificationInputs) String() string

type AutoMlVideoClassificationInputs_ModelType

type AutoMlVideoClassificationInputs_ModelType int32
const (
    // Should not be set.
    AutoMlVideoClassificationInputs_MODEL_TYPE_UNSPECIFIED AutoMlVideoClassificationInputs_ModelType = 0
    // A model best tailored to be used within Google Cloud, and which cannot
    // be exported. Default.
    AutoMlVideoClassificationInputs_CLOUD AutoMlVideoClassificationInputs_ModelType = 1
    // A model that, in addition to being available within Google Cloud, can
    // also be exported (see ModelService.ExportModel) as a TensorFlow or
    // TensorFlow Lite model and used on a mobile or edge device afterwards.
    AutoMlVideoClassificationInputs_MOBILE_VERSATILE_1 AutoMlVideoClassificationInputs_ModelType = 2
    // A model that, in addition to being available within Google Cloud, can
    // also be exported (see ModelService.ExportModel) to a Jetson device
    // afterwards.
    AutoMlVideoClassificationInputs_MOBILE_JETSON_VERSATILE_1 AutoMlVideoClassificationInputs_ModelType = 3
)

func (AutoMlVideoClassificationInputs_ModelType) Descriptor

func (AutoMlVideoClassificationInputs_ModelType) Descriptor() protoreflect.EnumDescriptor

func (AutoMlVideoClassificationInputs_ModelType) Enum

func (x AutoMlVideoClassificationInputs_ModelType) Enum() *AutoMlVideoClassificationInputs_ModelType

func (AutoMlVideoClassificationInputs_ModelType) EnumDescriptor

func (AutoMlVideoClassificationInputs_ModelType) EnumDescriptor() ([]byte, []int)

Deprecated: Use AutoMlVideoClassificationInputs_ModelType.Descriptor instead.

func (AutoMlVideoClassificationInputs_ModelType) Number

func (x AutoMlVideoClassificationInputs_ModelType) Number() protoreflect.EnumNumber

func (AutoMlVideoClassificationInputs_ModelType) String

func (x AutoMlVideoClassificationInputs_ModelType) String() string

func (AutoMlVideoClassificationInputs_ModelType) Type

func (AutoMlVideoClassificationInputs_ModelType) Type() protoreflect.EnumType

type AutoMlVideoObjectTracking

A TrainingJob that trains and uploads an AutoML Video ObjectTracking Model.

type AutoMlVideoObjectTracking struct {

    // The input parameters of this TrainingJob.
    Inputs *AutoMlVideoObjectTrackingInputs `protobuf:"bytes,1,opt,name=inputs,proto3" json:"inputs,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlVideoObjectTracking) Descriptor

func (*AutoMlVideoObjectTracking) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlVideoObjectTracking.ProtoReflect.Descriptor instead.

func (*AutoMlVideoObjectTracking) GetInputs

func (x *AutoMlVideoObjectTracking) GetInputs() *AutoMlVideoObjectTrackingInputs

func (*AutoMlVideoObjectTracking) ProtoMessage

func (*AutoMlVideoObjectTracking) ProtoMessage()

func (*AutoMlVideoObjectTracking) ProtoReflect

func (x *AutoMlVideoObjectTracking) ProtoReflect() protoreflect.Message

func (*AutoMlVideoObjectTracking) Reset

func (x *AutoMlVideoObjectTracking) Reset()

func (*AutoMlVideoObjectTracking) String

func (x *AutoMlVideoObjectTracking) String() string

type AutoMlVideoObjectTrackingInputs

type AutoMlVideoObjectTrackingInputs struct {
    ModelType AutoMlVideoObjectTrackingInputs_ModelType `protobuf:"varint,1,opt,name=model_type,json=modelType,proto3,enum=google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlVideoObjectTrackingInputs_ModelType" json:"model_type,omitempty"`
    // contains filtered or unexported fields
}

func (*AutoMlVideoObjectTrackingInputs) Descriptor

func (*AutoMlVideoObjectTrackingInputs) Descriptor() ([]byte, []int)

Deprecated: Use AutoMlVideoObjectTrackingInputs.ProtoReflect.Descriptor instead.

func (*AutoMlVideoObjectTrackingInputs) GetModelType

func (x *AutoMlVideoObjectTrackingInputs) GetModelType() AutoMlVideoObjectTrackingInputs_ModelType

func (*AutoMlVideoObjectTrackingInputs) ProtoMessage

func (*AutoMlVideoObjectTrackingInputs) ProtoMessage()

func (*AutoMlVideoObjectTrackingInputs) ProtoReflect

func (x *AutoMlVideoObjectTrackingInputs) ProtoReflect() protoreflect.Message

func (*AutoMlVideoObjectTrackingInputs) Reset

func (x *AutoMlVideoObjectTrackingInputs) Reset()

func (*AutoMlVideoObjectTrackingInputs) String

func (x *AutoMlVideoObjectTrackingInputs) String() string

type AutoMlVideoObjectTrackingInputs_ModelType

type AutoMlVideoObjectTrackingInputs_ModelType int32
const (
    // Should not be set.
    AutoMlVideoObjectTrackingInputs_MODEL_TYPE_UNSPECIFIED AutoMlVideoObjectTrackingInputs_ModelType = 0
    // A model best tailored to be used within Google Cloud, and which c annot
    // be exported. Default.
    AutoMlVideoObjectTrackingInputs_CLOUD AutoMlVideoObjectTrackingInputs_ModelType = 1
    // A model that, in addition to being available within Google Cloud, can
    // also be exported (see ModelService.ExportModel) as a TensorFlow or
    // TensorFlow Lite model and used on a mobile or edge device afterwards.
    AutoMlVideoObjectTrackingInputs_MOBILE_VERSATILE_1 AutoMlVideoObjectTrackingInputs_ModelType = 2
    // A versatile model that is meant to be exported (see
    // ModelService.ExportModel) and used on a Google Coral device.
    AutoMlVideoObjectTrackingInputs_MOBILE_CORAL_VERSATILE_1 AutoMlVideoObjectTrackingInputs_ModelType = 3
    // A model that trades off quality for low latency, to be exported (see
    // ModelService.ExportModel) and used on a Google Coral device.
    AutoMlVideoObjectTrackingInputs_MOBILE_CORAL_LOW_LATENCY_1 AutoMlVideoObjectTrackingInputs_ModelType = 4
    // A versatile model that is meant to be exported (see
    // ModelService.ExportModel) and used on an NVIDIA Jetson device.
    AutoMlVideoObjectTrackingInputs_MOBILE_JETSON_VERSATILE_1 AutoMlVideoObjectTrackingInputs_ModelType = 5
    // A model that trades off quality for low latency, to be exported (see
    // ModelService.ExportModel) and used on an NVIDIA Jetson device.
    AutoMlVideoObjectTrackingInputs_MOBILE_JETSON_LOW_LATENCY_1 AutoMlVideoObjectTrackingInputs_ModelType = 6
)

func (AutoMlVideoObjectTrackingInputs_ModelType) Descriptor

func (AutoMlVideoObjectTrackingInputs_ModelType) Descriptor() protoreflect.EnumDescriptor

func (AutoMlVideoObjectTrackingInputs_ModelType) Enum

func (x AutoMlVideoObjectTrackingInputs_ModelType) Enum() *AutoMlVideoObjectTrackingInputs_ModelType

func (AutoMlVideoObjectTrackingInputs_ModelType) EnumDescriptor

func (AutoMlVideoObjectTrackingInputs_ModelType) EnumDescriptor() ([]byte, []int)

Deprecated: Use AutoMlVideoObjectTrackingInputs_ModelType.Descriptor instead.

func (AutoMlVideoObjectTrackingInputs_ModelType) Number

func (x AutoMlVideoObjectTrackingInputs_ModelType) Number() protoreflect.EnumNumber

func (AutoMlVideoObjectTrackingInputs_ModelType) String

func (x AutoMlVideoObjectTrackingInputs_ModelType) String() string

func (AutoMlVideoObjectTrackingInputs_ModelType) Type

func (AutoMlVideoObjectTrackingInputs_ModelType) Type() protoreflect.EnumType

type ExportEvaluatedDataItemsConfig

Configuration for exporting test set predictions to a BigQuery table.

type ExportEvaluatedDataItemsConfig struct {

    // URI of desired destination BigQuery table. Expected format:
    // bq://<project_id>:<dataset_id>:<table>
    //
    // If not specified, then results are exported to the following auto-created
    // BigQuery table:
    // <project_id>:export_evaluated_examples_<model_name>_<yyyy_MM_dd'T'HH_mm_ss_SSS'Z'>.evaluated_examples
    DestinationBigqueryUri string `protobuf:"bytes,1,opt,name=destination_bigquery_uri,json=destinationBigqueryUri,proto3" json:"destination_bigquery_uri,omitempty"`
    // If true and an export destination is specified, then the contents of the
    // destination are overwritten. Otherwise, if the export destination already
    // exists, then the export operation fails.
    OverrideExistingTable bool `protobuf:"varint,2,opt,name=override_existing_table,json=overrideExistingTable,proto3" json:"override_existing_table,omitempty"`
    // contains filtered or unexported fields
}

func (*ExportEvaluatedDataItemsConfig) Descriptor

func (*ExportEvaluatedDataItemsConfig) Descriptor() ([]byte, []int)

Deprecated: Use ExportEvaluatedDataItemsConfig.ProtoReflect.Descriptor instead.

func (*ExportEvaluatedDataItemsConfig) GetDestinationBigqueryUri

func (x *ExportEvaluatedDataItemsConfig) GetDestinationBigqueryUri() string

func (*ExportEvaluatedDataItemsConfig) GetOverrideExistingTable

func (x *ExportEvaluatedDataItemsConfig) GetOverrideExistingTable() bool

func (*ExportEvaluatedDataItemsConfig) ProtoMessage

func (*ExportEvaluatedDataItemsConfig) ProtoMessage()

func (*ExportEvaluatedDataItemsConfig) ProtoReflect

func (x *ExportEvaluatedDataItemsConfig) ProtoReflect() protoreflect.Message

func (*ExportEvaluatedDataItemsConfig) Reset

func (x *ExportEvaluatedDataItemsConfig) Reset()

func (*ExportEvaluatedDataItemsConfig) String

func (x *ExportEvaluatedDataItemsConfig) String() string