func CallerInfo() []string
CallerInfo returns an array of strings containing the file and line number of each stack frame leading from the current test to the assert call that failed.
func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool
Contains asserts that the specified string, list(array, slice...) or map contains the specified substring or element.
assert.Contains(t, "Hello World", "World") assert.Contains(t, ["Hello", "World"], "World") assert.Contains(t, {"Hello": "World"}, "Hello")
func Containsf(t TestingT, s interface{}, contains interface{}, msg string, args ...interface{}) bool
Containsf asserts that the specified string, list(array, slice...) or map contains the specified substring or element.
assert.Containsf(t, "Hello World", "World", "error message %s", "formatted") assert.Containsf(t, ["Hello", "World"], "World", "error message %s", "formatted") assert.Containsf(t, {"Hello": "World"}, "Hello", "error message %s", "formatted")
func DifferentAddressRanges(t TestingT, a, b []byte) (ok bool)
DifferentAddressRanges asserts that two byte slices reference distinct memory address ranges, meaning they reference different underlying byte arrays.
func ElementsMatch(t TestingT, listA, listB interface{}, msgAndArgs ...interface{}) (ok bool)
ElementsMatch asserts that the specified listA(array, slice...) is equal to specified listB(array, slice...) ignoring the order of the elements. If there are duplicate elements, the number of appearances of each of them in both lists should match.
assert.ElementsMatch(t, [1, 3, 2, 3], [1, 3, 3, 2])
func ElementsMatchf(t TestingT, listA interface{}, listB interface{}, msg string, args ...interface{}) bool
ElementsMatchf asserts that the specified listA(array, slice...) is equal to specified listB(array, slice...) ignoring the order of the elements. If there are duplicate elements, the number of appearances of each of them in both lists should match.
assert.ElementsMatchf(t, [1, 3, 2, 3], [1, 3, 3, 2], "error message %s", "formatted")
func Equal(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool
Equal asserts that two objects are equal.
assert.Equal(t, 123, 123)
Pointer variable equality is determined based on the equality of the referenced values (as opposed to the memory addresses). Function equality cannot be determined and will always fail.
func EqualBSON(t TestingT, expected, actual interface{}) bool
EqualBSON asserts that the expected and actual BSON binary values are equal. If the values are not equal, it prints both the binary and Extended JSON diff of the BSON values. The provided BSON value types must implement the fmt.Stringer interface.
func EqualError(t TestingT, theError error, errString string, msgAndArgs ...interface{}) bool
EqualError asserts that a function returned an error (i.e. not `nil`) and that it is equal to the provided error.
actualObj, err := SomeFunction() assert.EqualError(t, err, expectedErrorString)
func EqualErrorf(t TestingT, theError error, errString string, msg string, args ...interface{}) bool
EqualErrorf asserts that a function returned an error (i.e. not `nil`) and that it is equal to the provided error.
actualObj, err := SomeFunction() assert.EqualErrorf(t, err, expectedErrorString, "error message %s", "formatted")
func EqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool
EqualValues asserts that two objects are equal or convertible to the same types and equal.
assert.EqualValues(t, uint32(123), int32(123))
func EqualValuesf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool
EqualValuesf asserts that two objects are equal or convertible to the same types and equal.
assert.EqualValuesf(t, uint32(123), int32(123), "error message %s", "formatted")
func Equalf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool
Equalf asserts that two objects are equal.
assert.Equalf(t, 123, 123, "error message %s", "formatted")
Pointer variable equality is determined based on the equality of the referenced values (as opposed to the memory addresses). Function equality cannot be determined and will always fail.
func Error(t TestingT, err error, msgAndArgs ...interface{}) bool
Error asserts that a function returned an error (i.e. not `nil`).
actualObj, err := SomeFunction() if assert.Error(t, err) { assert.Equal(t, expectedError, err) }
func ErrorContains(t TestingT, theError error, contains string, msgAndArgs ...interface{}) bool
ErrorContains asserts that a function returned an error (i.e. not `nil`) and that the error contains the specified substring.
actualObj, err := SomeFunction() assert.ErrorContains(t, err, expectedErrorSubString)
func ErrorContainsf(t TestingT, theError error, contains string, msg string, args ...interface{}) bool
ErrorContainsf asserts that a function returned an error (i.e. not `nil`) and that the error contains the specified substring.
actualObj, err := SomeFunction() assert.ErrorContainsf(t, err, expectedErrorSubString, "error message %s", "formatted")
func ErrorIs(t TestingT, err, target error, msgAndArgs ...interface{}) bool
ErrorIs asserts that at least one of the errors in err's chain matches target. This is a wrapper for errors.Is.
func Errorf(t TestingT, err error, msg string, args ...interface{}) bool
Errorf asserts that a function returned an error (i.e. not `nil`).
actualObj, err := SomeFunction() if assert.Errorf(t, err, "error message %s", "formatted") { assert.Equal(t, expectedErrorf, err) }
func Eventually(t TestingT, condition func() bool, waitFor time.Duration, tick time.Duration, msgAndArgs ...interface{}) bool
Eventually asserts that given condition will be met in waitFor time, periodically checking target function each tick.
assert.Eventually(t, func() bool { return true; }, time.Second, 10*time.Millisecond)
func Eventuallyf(t TestingT, condition func() bool, waitFor time.Duration, tick time.Duration, msg string, args ...interface{}) bool
Eventuallyf asserts that given condition will be met in waitFor time, periodically checking target function each tick.
assert.Eventuallyf(t, func() bool { return true; }, time.Second, 10*time.Millisecond, "error message %s", "formatted")
func Fail(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool
Fail reports a failure through
func FailNow(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool
FailNow fails test
func FailNowf(t TestingT, failureMessage string, msg string, args ...interface{}) bool
FailNowf fails test
func Failf(t TestingT, failureMessage string, msg string, args ...interface{}) bool
Failf reports a failure through
func False(t TestingT, value bool, msgAndArgs ...interface{}) bool
False asserts that the specified value is false.
assert.False(t, myBool)
func Falsef(t TestingT, value bool, msg string, args ...interface{}) bool
Falsef asserts that the specified value is false.
assert.Falsef(t, myBool, "error message %s", "formatted")
func GetContextDiffString(diff ContextDiff) (string, error)
GetContextDiffString is like WriteContextDiff but returns the diff as a string.
func GetUnifiedDiffString(diff UnifiedDiff) (string, error)
GetUnifiedDiffString is like WriteUnifiedDiff but returns the diff as a string.
func Greater(t TestingT, e1 interface{}, e2 interface{}, msgAndArgs ...interface{}) bool
Greater asserts that the first element is greater than the second
assert.Greater(t, 2, 1) assert.Greater(t, float64(2), float64(1)) assert.Greater(t, "b", "a")
func GreaterOrEqual(t TestingT, e1 interface{}, e2 interface{}, msgAndArgs ...interface{}) bool
GreaterOrEqual asserts that the first element is greater than or equal to the second
assert.GreaterOrEqual(t, 2, 1) assert.GreaterOrEqual(t, 2, 2) assert.GreaterOrEqual(t, "b", "a") assert.GreaterOrEqual(t, "b", "b")
func GreaterOrEqualf(t TestingT, e1 interface{}, e2 interface{}, msg string, args ...interface{}) bool
GreaterOrEqualf asserts that the first element is greater than or equal to the second
assert.GreaterOrEqualf(t, 2, 1, "error message %s", "formatted") assert.GreaterOrEqualf(t, 2, 2, "error message %s", "formatted") assert.GreaterOrEqualf(t, "b", "a", "error message %s", "formatted") assert.GreaterOrEqualf(t, "b", "b", "error message %s", "formatted")
func Greaterf(t TestingT, e1 interface{}, e2 interface{}, msg string, args ...interface{}) bool
Greaterf asserts that the first element is greater than the second
assert.Greaterf(t, 2, 1, "error message %s", "formatted") assert.Greaterf(t, float64(2), float64(1), "error message %s", "formatted") assert.Greaterf(t, "b", "a", "error message %s", "formatted")
func InDelta(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool
InDelta asserts that the two numerals are within delta of each other.
assert.InDelta(t, math.Pi, 22/7.0, 0.01)
func InDeltaf(t TestingT, expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) bool
InDeltaf asserts that the two numerals are within delta of each other.
assert.InDeltaf(t, math.Pi, 22/7.0, 0.01, "error message %s", "formatted")
func IsType(t TestingT, expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool
IsType asserts that the specified objects are of the same type.
func IsTypef(t TestingT, expectedType interface{}, object interface{}, msg string, args ...interface{}) bool
IsTypef asserts that the specified objects are of the same type.
func Len(t TestingT, object interface{}, length int, msgAndArgs ...interface{}) bool
Len asserts that the specified object has specific length. Len also fails if the object has a type that len() not accept.
assert.Len(t, mySlice, 3)
func Lenf(t TestingT, object interface{}, length int, msg string, args ...interface{}) bool
Lenf asserts that the specified object has specific length. Lenf also fails if the object has a type that len() not accept.
assert.Lenf(t, mySlice, 3, "error message %s", "formatted")
func Less(t TestingT, e1 interface{}, e2 interface{}, msgAndArgs ...interface{}) bool
Less asserts that the first element is less than the second
assert.Less(t, 1, 2) assert.Less(t, float64(1), float64(2)) assert.Less(t, "a", "b")
func LessOrEqual(t TestingT, e1 interface{}, e2 interface{}, msgAndArgs ...interface{}) bool
LessOrEqual asserts that the first element is less than or equal to the second
assert.LessOrEqual(t, 1, 2) assert.LessOrEqual(t, 2, 2) assert.LessOrEqual(t, "a", "b") assert.LessOrEqual(t, "b", "b")
func LessOrEqualf(t TestingT, e1 interface{}, e2 interface{}, msg string, args ...interface{}) bool
LessOrEqualf asserts that the first element is less than or equal to the second
assert.LessOrEqualf(t, 1, 2, "error message %s", "formatted") assert.LessOrEqualf(t, 2, 2, "error message %s", "formatted") assert.LessOrEqualf(t, "a", "b", "error message %s", "formatted") assert.LessOrEqualf(t, "b", "b", "error message %s", "formatted")
func Lessf(t TestingT, e1 interface{}, e2 interface{}, msg string, args ...interface{}) bool
Lessf asserts that the first element is less than the second
assert.Lessf(t, 1, 2, "error message %s", "formatted") assert.Lessf(t, float64(1), float64(2), "error message %s", "formatted") assert.Lessf(t, "a", "b", "error message %s", "formatted")
func Negative(t TestingT, e interface{}, msgAndArgs ...interface{}) bool
Negative asserts that the specified element is negative
assert.Negative(t, -1) assert.Negative(t, -1.23)
func Negativef(t TestingT, e interface{}, msg string, args ...interface{}) bool
Negativef asserts that the specified element is negative
assert.Negativef(t, -1, "error message %s", "formatted") assert.Negativef(t, -1.23, "error message %s", "formatted")
func Nil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool
Nil asserts that the specified object is nil.
assert.Nil(t, err)
func Nilf(t TestingT, object interface{}, msg string, args ...interface{}) bool
Nilf asserts that the specified object is nil.
assert.Nilf(t, err, "error message %s", "formatted")
func NoError(t TestingT, err error, msgAndArgs ...interface{}) bool
NoError asserts that a function returned no error (i.e. `nil`).
actualObj, err := SomeFunction() if assert.NoError(t, err) { assert.Equal(t, expectedObj, actualObj) }
func NoErrorf(t TestingT, err error, msg string, args ...interface{}) bool
NoErrorf asserts that a function returned no error (i.e. `nil`).
actualObj, err := SomeFunction() if assert.NoErrorf(t, err, "error message %s", "formatted") { assert.Equal(t, expectedObj, actualObj) }
func NotContains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool
NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the specified substring or element.
assert.NotContains(t, "Hello World", "Earth") assert.NotContains(t, ["Hello", "World"], "Earth") assert.NotContains(t, {"Hello": "World"}, "Earth")
func NotContainsf(t TestingT, s interface{}, contains interface{}, msg string, args ...interface{}) bool
NotContainsf asserts that the specified string, list(array, slice...) or map does NOT contain the specified substring or element.
assert.NotContainsf(t, "Hello World", "Earth", "error message %s", "formatted") assert.NotContainsf(t, ["Hello", "World"], "Earth", "error message %s", "formatted") assert.NotContainsf(t, {"Hello": "World"}, "Earth", "error message %s", "formatted")
func NotEqual(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool
NotEqual asserts that the specified values are NOT equal.
assert.NotEqual(t, obj1, obj2)
Pointer variable equality is determined based on the equality of the referenced values (as opposed to the memory addresses).
func NotEqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool
NotEqualValues asserts that two objects are not equal even when converted to the same type
assert.NotEqualValues(t, obj1, obj2)
func NotEqualValuesf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool
NotEqualValuesf asserts that two objects are not equal even when converted to the same type
assert.NotEqualValuesf(t, obj1, obj2, "error message %s", "formatted")
func NotEqualf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool
NotEqualf asserts that the specified values are NOT equal.
assert.NotEqualf(t, obj1, obj2, "error message %s", "formatted")
Pointer variable equality is determined based on the equality of the referenced values (as opposed to the memory addresses).
func NotNil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool
NotNil asserts that the specified object is not nil.
assert.NotNil(t, err)
func NotNilf(t TestingT, object interface{}, msg string, args ...interface{}) bool
NotNilf asserts that the specified object is not nil.
assert.NotNilf(t, err, "error message %s", "formatted")
func ObjectsAreEqual(expected, actual interface{}) bool
ObjectsAreEqual determines if two objects are considered equal.
This function does no assertion of any kind.
func ObjectsAreEqualValues(expected, actual interface{}) bool
ObjectsAreEqualValues gets whether two objects are equal, or if their values are equal.
func Positive(t TestingT, e interface{}, msgAndArgs ...interface{}) bool
Positive asserts that the specified element is positive
assert.Positive(t, 1) assert.Positive(t, 1.23)
func Positivef(t TestingT, e interface{}, msg string, args ...interface{}) bool
Positivef asserts that the specified element is positive
assert.Positivef(t, 1, "error message %s", "formatted") assert.Positivef(t, 1.23, "error message %s", "formatted")
func Soon(t TestingT, callback func(ctx context.Context), timeout time.Duration)
Soon runs the provided callback and fails the passed-in test if the callback does not complete within timeout. The provided callback should respect the passed-in context and cease execution when it has expired.
Deprecated: This function will be removed with GODRIVER-2667, use assert.Eventually instead.
func SplitLines(s string) []string
SplitLines splits a string on "\n" while preserving them. The output can be used as input for UnifiedDiff and ContextDiff structures.
func True(t TestingT, value bool, msgAndArgs ...interface{}) bool
True asserts that the specified value is true.
assert.True(t, myBool)
func Truef(t TestingT, value bool, msg string, args ...interface{}) bool
Truef asserts that the specified value is true.
assert.Truef(t, myBool, "error message %s", "formatted")
func WithinDuration(t TestingT, expected, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool
WithinDuration asserts that the two times are within duration delta of each other.
assert.WithinDuration(t, time.Now(), time.Now(), 10*time.Second)
func WithinDurationf(t TestingT, expected time.Time, actual time.Time, delta time.Duration, msg string, args ...interface{}) bool
WithinDurationf asserts that the two times are within duration delta of each other.
assert.WithinDurationf(t, time.Now(), time.Now(), 10*time.Second, "error message %s", "formatted")
func WriteContextDiff(writer io.Writer, diff ContextDiff) error
WriteContextDiff compares two sequences of lines; generates the delta as a context diff.
Context diffs are a compact way of showing line changes and a few lines of context. The number of context lines is set by diff.Context which defaults to three.
By default, the diff control lines (those with *** or ---) are created with a trailing newline.
For inputs that do not have trailing newlines, set the diff.Eol argument to "" so that the output will be uniformly newline free.
The context diff format normally has a header for filenames and modification times. Any or all of these may be specified using strings for diff.FromFile, diff.ToFile, diff.FromDate, diff.ToDate. The modification times are normally expressed in the ISO 8601 format. If not specified, the strings default to blanks.
func WriteUnifiedDiff(writer io.Writer, diff UnifiedDiff) error
WriteUnifiedDiff compares two sequences of lines; generates the delta as a unified diff.
Unified diffs are a compact way of showing line changes and a few lines of context. The number of context lines is set by 'n' which defaults to three.
By default, the diff control lines (those with ---, +++, or @@) are created with a trailing newline. This is helpful so that inputs created from file.readlines() result in diffs that are suitable for file.writelines() since both the inputs and outputs have trailing newlines.
For inputs that do not have trailing newlines, set the lineterm argument to "" so that the output will be uniformly newline free.
The unidiff format normally has a header for filenames and modification times. Any or all of these may be specified using strings for 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'. The modification times are normally expressed in the ISO 8601 format.
type CompareType int
type ContextDiff UnifiedDiff
type Match struct { A int B int Size int }
type OpCode struct { Tag byte I1 int I2 int J1 int J2 int }
SequenceMatcher compares sequence of strings. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980's by Ratcliff and Obershelp under the hyperbolic name "gestalt pattern matching". The basic idea is to find the longest contiguous matching subsequence that contains no "junk" elements (R-O doesn't address junk). The same idea is then applied recursively to the pieces of the sequences to the left and to the right of the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that "look right" to people.
SequenceMatcher tries to compute a "human-friendly diff" between two sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the longest *contiguous* & junk-free matching subsequence. That's what catches peoples' eyes. The Windows(tm) windiff has another interesting notion, pairing up elements that appear uniquely in each sequence. That, and the method here, appear to yield more intuitive difference reports than does diff. This method appears to be the least vulnerable to syncing up on blocks of "junk lines", though (like blank lines in ordinary text files, or maybe "<P>" lines in HTML files). That may be because this is the only method of the 3 that has a *concept* of "junk" <wink>.
Timing: Basic R-O is cubic time worst case and quadratic time expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior dependent in a complicated way on how many elements the sequences have in common; best case time is linear.
type SequenceMatcher struct { IsJunk func(string) bool // contains filtered or unexported fields }
func NewMatcher(a, b []string) *SequenceMatcher
func NewMatcherWithJunk(a, b []string, autoJunk bool, isJunk func(string) bool) *SequenceMatcher
func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode
GetGroupedOpCodes isolates change clusters by eliminating ranges with no changes.
Returns a generator of groups with up to n lines of context. Each group is in the same format as returned by GetOpCodes().
func (m *SequenceMatcher) GetMatchingBlocks() []Match
GetMatchingBlocks returns list of triples describing matching subsequences.
Each triple is of the form (i, j, n), and means that a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are adjacent triples in the list, and the second is not the last triple in the list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe adjacent equal blocks.
The last triple is a dummy, (len(a), len(b), 0), and is the only triple with n==0.
func (m *SequenceMatcher) GetOpCodes() []OpCode
GetOpCodes returns a list of 5-tuples describing how to turn a into b.
Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the tuple preceding it, and likewise for j1 == the previous j2.
The tags are characters, with these meanings:
'r' (replace): a[i1:i2] should be replaced by b[j1:j2]
'd' (delete): a[i1:i2] should be deleted, j1==j2 in this case.
'i' (insert): b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case.
'e' (equal): a[i1:i2] == b[j1:j2]
func (m *SequenceMatcher) QuickRatio() float64
QuickRatio returns an upper bound on ratio() relatively quickly.
This isn't defined beyond that it is an upper bound on .Ratio(), and is faster to compute.
func (m *SequenceMatcher) Ratio() float64
Ratio returns a measure of the sequences' similarity (float in [0,1]).
Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M / T. Note that this is 1 if the sequences are identical, and 0 if they have nothing in common.
.Ratio() is expensive to compute if you haven't already computed .GetMatchingBlocks() or .GetOpCodes(), in which case you may want to try .QuickRatio() or .RealQuickRation() first to get an upper bound.
func (m *SequenceMatcher) RealQuickRatio() float64
RealQuickRatio returns an upper bound on ratio() very quickly.
This isn't defined beyond that it is an upper bound on .Ratio(), and is faster to compute than either .Ratio() or .QuickRatio().
func (m *SequenceMatcher) SetSeq1(a []string)
SetSeq1 sets the first sequence to be compared. The second sequence to be compared is not changed.
SequenceMatcher computes and caches detailed information about the second sequence, so if you want to compare one sequence S against many sequences, use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other sequences.
See also SetSeqs() and SetSeq2().
func (m *SequenceMatcher) SetSeq2(b []string)
SetSeq2 sets the second sequence to be compared. The first sequence to be compared is not changed.
func (m *SequenceMatcher) SetSeqs(a, b []string)
SetSeqs sets the two sequences to be compared.
TestingT is an interface wrapper around *testing.T
type TestingT interface { Errorf(format string, args ...interface{}) }
UnifiedDiff represents the unified diff parameters.
type UnifiedDiff struct { A []string // First sequence lines FromFile string // First file name FromDate string // First file time B []string // Second sequence lines ToFile string // Second file name ToDate string // Second file time Eol string // Headers end of line, defaults to LF Context int // Number of context lines }